Publications by authors named "Pietro Cacialli"

Neurogenesis is the process by which new brain cells are formed. This crucial event emerges during embryonic life and proceeds in adulthood, and it could be influenced by environmental pollution. Non-combustion-derived magnetite represents a portion of the coarse particulate matter (PM) contributing to air and water pollution in urban settings.

View Article and Find Full Text PDF

Cytoplasmic linker-associated protein-2 (CLASP2) is a member of the CLIP-associating proteins (CLASPs) family involved in the structure and function of microtubules and Golgi apparatus. Several studies performed using different mammalian and non-mammalian model organisms reported that CLASP2 controls microtubule dynamics and the organization of microtubule networks. In and mice, an important role of CLASP2 during the development of germ cell lines has been uncovered.

View Article and Find Full Text PDF

Shimizu, Y., Kawasaki, T. Stab wound injury model of the adult optic tectum using zebrafish and medaka for the comparative analysis of regenerative capacity.

View Article and Find Full Text PDF

In vertebrates, neurotrophins and their receptors play a fundamental role in the central and peripheral nervous systems. Several studies reported that each neurotrophin/receptor signalling pathway can perform various functions during axon development, neuronal growth, and plasticity. Previous investigations in some fish species have identified neurotrophins and their receptors in the spinal cord under physiological conditions and after injuries, highlighting their potential role during regeneration.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) guarantee the continuous supply of all blood lineages during life. In response to stress, HSCs are capable of extensive proliferative expansion, whereas in steady state, HSCs largely remain in a quiescent state to prevent their exhaustion. DNA replication is a very complex process, where many factors need to exert their functions in a perfectly concerted manner.

View Article and Find Full Text PDF

During development, hematopoietic stem cells (HSCs) are produced from the hemogenic endothelium and will expand in a transient hematopoietic niche. Prostaglandin E (PGE2) is essential during vertebrate development and HSC specification, but its precise source in the embryo remains elusive. Here, we show that in the zebrafish embryo, PGE2 synthesis genes are expressed by distinct stromal cell populations, myeloid (neutrophils, macrophages), and endothelial cells of the caudal hematopoietic tissue.

View Article and Find Full Text PDF

Neurotrophins and their receptors are involved in the development and maintenance of neuronal populations. Different reports have shown that all neurotrophin/receptor pathways can also play a role in several non-neuronal tissues in vertebrates, including the kidney. These signaling pathways are involved in different events to ensure the correct functioning of the kidney, such as growth, differentiation, and regulation of renal tubule transport.

View Article and Find Full Text PDF

Nerve growth factor (NGF), a member of the neurotrophin family, has emerged as an active mediator in different crucial events in the peripheral and central nervous system. At the same time, several studies showed that this neurotrophin can also play a role in non-neuronal tissues (e.g.

View Article and Find Full Text PDF

Objectives: Evidence shows that dysfunctional SSc keratinocytes contribute to fibrosis by altering dermal homeostasis. Whether IL-25, an IL-17 family member regulating many epidermal functions, takes part in skin fibrosis is unknown. Here we address the role of IL-25 in skin fibrosis.

View Article and Find Full Text PDF

Metabolic disorders are very common in the population worldwide and are among the diseases with the highest health utilization and costs per person. Despite the ongoing efforts to develop new treatments, currently, for many of these disorders, there are no approved therapies, resulting in a huge economic hit and tension for society. In this review, we recapitulate the recent advancements in stem cell (gene) therapy as potential tools for the long-term treatment of both inherited (lysosomal storage diseases) and acquired (diabetes mellitus, obesity) metabolic disorders, focusing on the main promising results observed in human patients and discussing the critical hurdles preventing the definitive jump of this approach from the bench to the clinic.

View Article and Find Full Text PDF

During early vertebrate development, hematopoietic stem and progenitor cells (HSPCs) are produced in hemogenic endothelium located in the dorsal aorta, before they migrate to a transient niche where they expand to the fetal liver and the caudal hematopoietic tissue, in mammals and zebrafish, respectively. In zebrafish, previous studies have shown that the extracellular matrix (ECM) around the aorta must be degraded to enable HSPCs to leave the aortic floor and reach blood circulation. However, the role of the ECM components in HSPC specification has never been addressed.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) represent a by-product of metabolism and their excess is toxic for hematopoietic stem and progenitor cells (HSPCs). During embryogenesis, a small number of HSPCs are produced from the hemogenic endothelium, before they colonize a transient organ where they expand, for example the fetal liver in mammals. In this study, we use zebrafish to understand the molecular mechanisms that are important in the caudal hematopoietic tissue (equivalent to the mammalian fetal liver) to promote HSPC expansion.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) remains the leading cause of long-term disability, which annually involves millions of individuals. Several studies on mammals reported that neurotrophins could play a significant role in both protection and recovery of function following neurodegenerative diseases such as stroke and TBI. This protective role of neurotrophins after an event of TBI has also been reported in the zebrafish model.

View Article and Find Full Text PDF

Nerve growth factor (NGF), a member of the neurotrophin family, was initially described as neuronal survival and growth factor, but successively has emerged as an active mediator in many essential functions in the central nervous system of mammals. NGF is synthesized as a precursor pro-NGF and is cleaved intracellularly into mature NGF. However, recent evidence demonstrates that pro-NGF is not a simple inactive precursor, but is also secreted outside the cells and can exert multiple roles.

View Article and Find Full Text PDF

Zebrafish () is a teleost fish widely accepted as a model organism for neuroscientific studies. The adults show common basic vertebrate brain structures, together with similar key neuroanatomical and neurochemical pathways of relevance to human diseases. However, the brain of adult zebrafish possesses, differently from mammals, intense neurogenic activity, which can be correlated with high regenerative properties.

View Article and Find Full Text PDF

Several mammalian animal models of traumatic brain injury have been used, mostly rodents. However, reparative mechanisms in mammalian brain are very limited, and newly formed neurons do not survive for long time. The brain of adult zebrafish, a teleost fish widely used as vertebrate model, possesses high regenerative properties after injury due to the presence of numerous stem cells niches.

View Article and Find Full Text PDF

The reparative ability of the central nervous system varies widely in the animal kingdom. In the mammalian brain, the regenerative mechanisms are very limited and newly formed neurons do not survive longer, probably due to a non-suitable local environment. On the opposite, fish can repair the brain after injury, with fast and complete recovery of damaged area.

View Article and Find Full Text PDF

Zebrafish, a suitable and widely used teleost fish model in basic biomedical research, displays morphophysiological features of adult gonads that share some commonalities with those of mammalian species. In mammals, gametogenesis is regulated, among several factors, by brain-derived neurotrophic factor (BDNF). This neurotrophin has a well-established role in the developing and adult nervous system, as well as gonads development and functions in vertebrate species.

View Article and Find Full Text PDF
Article Synopsis
  • Brain-derived neurotrophic factor (BDNF) is crucial for brain functions like neurogenesis and synaptic plasticity, which affect learning and memory.
  • Zebrafish, known for its use in genetic and developmental studies, has been identified as a promising model for neuroscience research due to its regenerative abilities and adult neurogenesis.
  • The study found that BDNF mRNAs are widely present in the zebrafish brain and are specifically expressed in neuronal cells, providing new insights into BDNF's role in brain function and repair.
View Article and Find Full Text PDF