Publications by authors named "Pietro Bongini"

Graph Neural Networks have proven to be very valuable models for the solution of a wide variety of problems on molecular graphs, as well as in many other research fields involving graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species. Composite graph neural networks process heterogeneous graphs with multiple-state-updating networks, each one dedicated to a particular node type.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) are fundamental processes governing cellular functions, crucial for understanding biological systems at the molecular level. Compared to experimental methods for PPI prediction and site identification, computational deep learning approaches represent an affordable and efficient solution to tackle these problems. Since protein structure can be summarized as a graph, graph neural networks (GNNs) represent the ideal deep learning architecture for the task.

View Article and Find Full Text PDF

Predicting drug side effects before they occur is a critical task for keeping the number of drug-related hospitalizations low and for improving drug discovery processes. Automatic predictors of side-effects generally are not able to process the structure of the drug, resulting in a loss of information. Graph neural networks have seen great success in recent years, thanks to their ability of exploiting the information conveyed by the graph structure and labels.

View Article and Find Full Text PDF

Recent studies confirmed that people unexposed to SARS-CoV-2 have preexisting reactivity, probably due to previous exposure to widely circulating common cold coronaviruses. Such preexistent reactivity against SARS-CoV-2 comes from memory T cells that can specifically recognize a SARS-CoV-2 epitope of structural and non-structural proteins and the homologous epitopes from common cold coronaviruses. Therefore, it is important to understand the SARS-CoV-2 cross-reactivity by investigating these protein sequence similarities with those of different circulating coronaviruses.

View Article and Find Full Text PDF

Drug Side-Effects (DSEs) have a high impact on public health, care system costs, and drug discovery processes. Predicting the probability of side-effects, before their occurrence, is fundamental to reduce this impact, in particular on drug discovery. Candidate molecules could be screened before undergoing clinical trials, reducing the costs in time, money, and health of the participants.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that correlate pathologies with missense mutations is of critical importance for disease risk estimations and for devising personalized therapies. Thus, we have performed a bioinformatic survey of ClinVar, a database of human genomic variations, to find signals that can account for missense mutation pathogenicity. Arginine resulted as the most frequently replaced amino acid both in benign and pathogenic mutations.

View Article and Find Full Text PDF

With a structural bioinformatic approach, we have explored amino acid compositions at PISA defined interfaces between small molecules and proteins that are contained in an optimized subset of 11,351 PDB files. The use of a series of restrictions, to prevent redundancy and biases from interactions between amino acids with charged side chains and ions, yielded a final data set of 45,230 protein-small molecule interfaces. We have compared occurrences of natural amino acids in surface exposed regions and binding sites for all the proteins of our data set.

View Article and Find Full Text PDF

The recent release of COVID-19 spike glycoprotein allows detailed analysis of the structural features that are required for stabilizing the infective form of its quaternary assembly. Trying to disassemble the trimeric structure of COVID-19 spike glycoprotein, we analyzed single protomer surfaces searching for concave moieties that are located at the three protomer-protomer interfaces. The presence of some druggable pockets at these interfaces suggested that some of the available drugs in Drug Bank could destabilize the quaternary spike glycoprotein formation by binding to these pockets, therefore interfering with COVID-19 life cycle.

View Article and Find Full Text PDF

Nowadays, it is well established that most of the human diseases which are not related to pathogen infections have their origin from DNA disorders. Thus, DNA mutations, waiting for the availability of CRISPR-like remedies, will propagate into proteomics, offering the possibility to select natural or synthetic molecules to fight against the effects of malfunctioning proteins. Drug discovery, indeed, is a flourishing field of biotechnological research to improve human health, even though the development of a new drug is increasingly more expensive in spite of the massive use of informatics in Medicinal Chemistry.

View Article and Find Full Text PDF