Annu Int Conf IEEE Eng Med Biol Soc
November 2021
Spontaneous pupil size fluctuations in humans and mouse models are noninvasively measured data that can be used for early detection of neurodevelopmental spectrum disorders. While highly valuable in such applied studies, pupillometry dynamics and dynamical characteristics have not been fully investigated, although their understanding may potentially lead to the discovery of new information, which cannot be readily uncovered by conventional methods. Properties of pupillometry dynamics, such as determinism, were previously investigated for healthy human subjects; however, the dynamical characteristics of pupillometry data in mouse models, and whether they are similar to those of human subjects, remain largely unknown.
View Article and Find Full Text PDFNeurodevelopmental spectrum disorders like autism (ASD) are diagnosed, on average, beyond age 4 y, after multiple critical periods of brain development close and behavioral intervention becomes less effective. This raises the urgent need for quantitative, noninvasive, and translational biomarkers for their early detection and tracking. We found that both idiopathic (BTBR) and genetic (CDKL5- and MeCP2-deficient) mouse models of ASD display an early, impaired cholinergic neuromodulation as reflected in altered spontaneous pupil fluctuations.
View Article and Find Full Text PDFAccurately mapping neuronal activity across brain networks is critical to understand behaviors, yet it is very challenging due to the need of tools with both high spatial and temporal resolutions. Here, penetrating arrays of flexible microelectrodes made of low-impedance nanomeshes are presented, which are capable of recording single-unit electrophysiological neuronal activity and at the same time, transparent, allowing to bridge electrical and optical brain mapping modalities. These 32 transparent penetrating electrodes with site area, 225 µm , have a low impedance of ≈149 kΩ at 1 kHz, an adequate charge injection limit of ≈0.
View Article and Find Full Text PDFTransparent microelectrode arrays have emerged as increasingly important tools for neuroscience by allowing simultaneous coupling of big and time-resolved electrophysiology data with optically measured, spatially and type resolved single neuron activity. Scaling down transparent electrodes to the length scale of a single neuron is challenging since conventional transparent conductors are limited by their capacitive electrode/electrolyte interface. In this study, we establish transparent microelectrode arrays with high performance, great biocompatibility, and comprehensive in vivo validations from a recently developed, bilayer-nanomesh material composite, where a metal layer and a low-impedance faradaic interfacial layer are stacked reliably together in a same transparent nanomesh pattern.
View Article and Find Full Text PDFIntracellular chloride ([Cl]) and pH (pH) are fundamental regulators of neuronal excitability. They exert wide-ranging effects on synaptic signaling and plasticity and on development and disorders of the brain. The ideal technique to elucidate the underlying ionic mechanisms is quantitative and combined two-photon imaging of [Cl] and pH, but this has never been performed at the cellular level in vivo.
View Article and Find Full Text PDFMultinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function.
View Article and Find Full Text PDFTwo-photon excitation spectroscopy is a powerful technique for the characterization of the optical properties of genetically encoded and synthetic fluorescent molecules. Excitation spectroscopy requires tuning the wavelength of the Ti:sapphire laser while carefully monitoring the delivered power. To assist laser tuning and the control of delivered power, we developed an Arduino Due based tool for the automatic acquisition of high quality spectra.
View Article and Find Full Text PDFWe measure, by photonic torque microscopy, the nonconservative rotational motion arising from the transverse components of the radiation pressure on optically trapped, ultrathin silicon nanowires. Unlike spherical particles, we find that nonconservative effects have a significant influence on the nanowire dynamics in the trap. We show that the extreme shape of the trapped nanowires yields a transverse component of the radiation pressure that results in an orbital rotation of the nanowire about the trap axis.
View Article and Find Full Text PDFWe report on the unconventional optical properties exhibited by a two-dimensional array of thin Si nanowires arranged in a random fractal geometry and fabricated using an inexpensive, fast and maskless process compatible with Si technology. The structure allows for a high light-trapping efficiency across the entire visible range, attaining total reflectance values as low as 0.1% when the wavelength in the medium matches the length scale of maximum heterogeneity in the system.
View Article and Find Full Text PDFIon homeostasis regulates critical physiological processes in the living cell. Intracellular chloride concentration not only contributes in setting the membrane potential of quiescent cells but it also plays a role in modulating the dynamic voltage changes during network activity. Dynamic chloride imaging demands new tools, allowing faster acquisition rates and correct accounting of concomitant pH changes.
View Article and Find Full Text PDFMulti-quantum well Si/Ge nanowires (NWs) were realized by combining molecular beam epitaxy deposition and metal-assisted wet etching, which is a low-cost technique for the synthesis of extremely dense (about 1011 cm-2) arrays of NWs with a high and controllable aspect ratio. In particular, we prepared ultrathin Si/Ge NWs having a mean diameter of about 8 nm and lengths spanning from 1.0 to 2.
View Article and Find Full Text PDFSilicon Nanowires prepared by Metal-Assisted Chemical Etching have been nanopatterned into periodic and aperiodic array geometries displaying functionality at visible wavelengths using top-down planar processing techniques. Broadband photoluminescense enhancement up to approximately one order of magnitude is measured from golden-angle spiral arrays over a wide parameter space.
View Article and Find Full Text PDFIn this paper we describe the luminescence properties of Si nanowires (NWs) prepared by a maskless synthesis technique, based on the Au-catalyzed wet etching of Si substrates by an aqueous solution of H(2)O(2) and HF. A strong room temperature photoluminescence (PL), centered at about 690 nm, is observed when Si NWs are optically excited. The detailed analysis of the steady-state and time-resolved PL properties of the system as a function of aging, temperature and pump power allows to demonstrate that the emission is due to the radiative recombination of quantum confined excitons.
View Article and Find Full Text PDFWe investigate size-scaling in optical trapping of ultrathin silicon nanowires showing how length regulates their Brownian dynamics, optical forces, and torques. Force and torque constants are measured on nanowires of different lengths through correlation function analysis of their tracking signals. Results are compared with a full electromagnetic theory of optical trapping developed in the transition matrix framework, finding good agreement.
View Article and Find Full Text PDFNanoscale Res Lett
February 2011
Si and Ge have the same crystalline structure, and although Si-Au and Ge-Au binary alloys are thermodynamically similar (same phase diagram, with the eutectic temperature of about 360°C), in this study, it is proved that Si and Ge nanowires (NWs) growth by electron beam evaporation occurs in very different temperature ranges and fluence regimes. In particular, it is demonstrated that Ge growth occurs just above the eutectic temperature, while Si NWs growth occurs at temperature higher than the eutectic temperature, at about 450°C. Moreover, Si NWs growth requires a higher evaporated fluence before the NWs become to be visible.
View Article and Find Full Text PDF