Six new species are described from Europe. Phylogenetic analyses, based on three loci, i.e.
View Article and Find Full Text PDFThe lichenicolous taxa currently included in the genus Hainesia were studied based on the nuclear rDNA (18S, 28S, and internal transcribed spacer [ITS]) genes. The authors found that lichenicolous taxa form a distinct lineage sister to Epiglia gloeocapsae (Phacidiales, Leotiomycetes), only distantly related to the type species of Hainesia (Chaetomellaceae, Helotiales). Owing to morphological similarities, the authors include the lichenicolous species into the previously monotypic genus Epithamnolia.
View Article and Find Full Text PDFThe resolution of the phylogenetic relationships within the order Teloschistales (Ascomycota, lichen-forming-fungi), with nearly 2000 known species and outstanding phenotypic diversity, has been hindered by the limitation in the resolving power that single-locus or two-locus phylogenetic studies have provided to date. In this context, an extensive taxon sampling within the Teloschistales with more loci (especially nuclear protein-coding genes) was needed to confront the current taxonomic delimitations and to understand evolutionary trends within this order. Comprehensive maximum likelihood and bayesian analyses were performed based on seven loci using a cumulative supermatrix approach, including protein-coding genes RPB1 and RPB2 in addition to nuclear and mitochondrial ribosomal RNA-coding genes.
View Article and Find Full Text PDFLichenicolous fungi are obligately lichen-associated organisms that have evolved many times throughout the Ascomycota and Basidiomycota. Approximately 20% of lichenicolous ascomycetes are recognized only from asexual (anamorphic) characteristics, so the phylogenetic position of many groups has never been resolved. Here we present the first molecular phylogeny of Lichenoconium, a genus of strictly asexual, obligately lichenicolous species with broad geographic distributions and diverse host ecologies.
View Article and Find Full Text PDFThe generic segregates of the widespread fruticose genus Ramalina (mostly based on empirical data on morphology, cortex anatomy and secondary metabolites) are studied using maximum parsimony, maximum likelihood and Bayesian analyses of nuclear LSU and ITS sequences. The species examined include the three species aggregates within Niebla from the western coasts of North America, all species except one assumed to belong to the same genus from Macaronesia and the Mediterranean basin, the type species of Dievernia and Ramalina, and representatives of the genus Fistulariella. The genus Niebla is strongly supported when restricted to species from the New World, and all species referred to it from Macaronesia and the Mediterranean basin belong to Ramalina (R.
View Article and Find Full Text PDF