Publications by authors named "Pieter de Bleser"

Transduction of endothelial cells (EC) with a vector that expresses apolipoprotein A-I (APOAI) reduces atherosclerosis in arteries of fat-fed rabbits. However, the effects on atherosclerosis are partial and might be enhanced if APOAI expression could be increased. With a goal of developing an expression cassette that generates higher levels of APOAI mRNA in EC, we tested 4 strategies, largely in vitro: addition of 2 types of enhancers, addition of computationally identified EC-specific cis-regulatory modules (CRM), and insertion of the rabbit APOAI gene at the transcription start site (TSS) of sequences cloned from genes that are highly expressed in cultured EC.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE.

View Article and Find Full Text PDF

Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients.

View Article and Find Full Text PDF

Dendritic cells (DCs) are key immune modulators and are able to mount immune responses or tolerance. DC differentiation and activation imply a plethora of molecular and cellular responses, including transcriptional changes. PU.

View Article and Find Full Text PDF

Macrophages are strongly adapted to their tissue of residence. Yet, little is known about the cell-cell interactions that imprint the tissue-specific identities of macrophages in their respective niches. Using conditional depletion of liver Kupffer cells, we traced the developmental stages of monocytes differentiating into Kupffer cells and mapped the cellular interactions imprinting the Kupffer cell identity.

View Article and Find Full Text PDF

Naive CD4 T cells differentiate into functionally diverse T helper (Th) cell subsets. Th2 cells play a pathogenic role in asthma, yet a clear picture of their transcriptional profile is lacking. We performed single-cell RNA sequencing (scRNA-seq) of T helper cells from lymph node, lung, and airways in the house dust mite (HDM) model of allergic airway disease.

View Article and Find Full Text PDF

Many pro-inflammatory pathways leading to arthritis have global effects on the immune system rather than only acting locally in joints. The reason behind the regional and patchy distribution of arthritis represents a longstanding paradox. Here we show that biomechanical loading acts as a decisive factor in the transition from systemic autoimmunity to joint inflammation.

View Article and Find Full Text PDF

Heterogeneity between different macrophage populations has become a defining feature of this lineage. However, the conserved factors defining macrophages remain largely unknown. The transcription factor ZEB2 is best described for its role in epithelial to mesenchymal transition; however, its role within the immune system is only now being elucidated.

View Article and Find Full Text PDF

Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v3 web server allows easy visualization and exploration of predicted transcription factor binding sites (TFBSs) in any genomic region surrounding coding or non-coding genes. In this updated version, with a completely re-implemented user interface using latest web technologies, users can choose from nine reference organisms ranging from human to yeast.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a pivotal role in the regulation of the immune response. DC development and activation is finely orchestrated through transcriptional programs. GATA1 transcription factor is required for murine DC development, and data suggest that it might be involved in the fine-tuning of the life span and function of activated DCs.

View Article and Find Full Text PDF

Studying the effects of HIV infection on the host transcriptome has typically focused on protein-coding genes. However, recent advances in the field of RNA sequencing revealed that long non-coding RNAs (lncRNAs) add an extensive additional layer to the cell's molecular network. Here, we performed transcriptome profiling throughout a primary HIV infection in vitro to investigate lncRNA expression at the different HIV replication cycle processes (reverse transcription, integration and particle production).

View Article and Find Full Text PDF

Background: Recent genetic association studies have linked the cadherin-based adherens junction protein alpha-T-catenin (αT-cat, CTNNA3) with the development of autism. Where αT-cat is expressed in the brain, and how its loss could contribute to this disorder, are entirely unknown.

Methods: We used the αT-cat knockout mouse to examine the localization of αT-cat in the brain, and we used histology and immunofluorescence analysis to examine the neurobiological consequences of its loss.

View Article and Find Full Text PDF

Gene therapy is a promising emerging therapeutic modality for the treatment of cardiovascular diseases and hereditary diseases that afflict the heart. Hence, there is a need to develop robust cardiac-specific expression modules that allow for stable expression of the gene of interest in cardiomyocytes. We therefore explored a new approach based on a genome-wide bioinformatics strategy that revealed novel cardiac-specific cis-acting regulatory modules (CS-CRMs).

View Article and Find Full Text PDF

The robustness and safety of liver-directed gene therapy can be substantially improved by enhancing expression of the therapeutic transgene in the liver. To achieve this, we developed a new approach of rational in silico vector design. This approach relies on a genome-wide bio-informatics strategy to identify cis-acting regulatory modules (CRMs) containing evolutionary conserved clusters of transcription factor binding site motifs that determine high tissue-specific gene expression.

View Article and Find Full Text PDF

The development of the next-generation gene therapy vectors for hemophilia requires using lower and thus potentially safer vector doses and augmenting their therapeutic efficacy. We have identified hepatocyte-specific transcriptional cis-regulatory modules (CRMs) by using a computational strategy that increased factor IX (FIX) levels 11- to 15-fold. Vector efficacy could be enhanced by combining these hepatocyte-specific CRMs with a synthetic codon-optimized hyperfunctional FIX-R338L Padua transgene.

View Article and Find Full Text PDF

The most important mechanism in the regulation of transcription is the binding of a transcription factor (TF) to a DNA sequence called the TF binding site (TFBS). Most binding sites are short and degenerate, which makes predictions based on their primary sequence alone somewhat unreliable. We present a new web tool that implements a flexible and extensible algorithm for predicting TFBS.

View Article and Find Full Text PDF

Transcription factor binding sites (TFBSs) are DNA sequences of 6-15 base pairs. Interaction of these TFBSs with transcription factors (TFs) is largely responsible for most spatiotemporal gene expression patterns. Here, we evaluate to what extent sequence-based prediction of TFBSs can be improved by taking into account the positional dependencies of nucleotides (NPDs) and the nucleotide sequence-dependent structure of DNA.

View Article and Find Full Text PDF

Despite the medical importance of respiratory syncytial virus (RSV) infections, there is no vaccine or therapeutic agent available. Prophylactic administration of palivizumab, a humanized monoclonal RSV fusion (F) protein-specific antibody, can protect high-risk children. Previously, we have demonstrated that RSV can be neutralized by picomolar concentrations of a camelid immunoglobulin single-variable domain that binds the RSV protein F (F-VHHb nanobodies).

View Article and Find Full Text PDF

Transcription factors are important gene regulators with distinctive roles in development, cell signaling and cell cycling, and they have been associated with many diseases. The ConTra v2 web server allows easy visualization and exploration of predicted transcription factor binding sites in any genomic region surrounding coding or non-coding genes. In this new version, users can choose from nine reference organisms ranging from human to yeast.

View Article and Find Full Text PDF

Metallothioneins (MTs) are ubiquitous metal-binding proteins that have been highly conserved throughout evolution. Although their physiological function is not completely understood, they are involved in diverse processes including metal homeostasis and detoxification, the oxidative stress response, inflammation, and cell proliferation. Te human MT gene family consists of at least 18 isoforms, containing pseudogenes as well as genes encoding functional proteins.

View Article and Find Full Text PDF

Background: Transcriptional regulation of genes in eukaryotes is achieved by the interactions of multiple transcription factors with arrays of transcription factor binding sites (TFBSs) on DNA and with each other. Identification of these TFBSs is an essential step in our understanding of gene regulatory networks, but computational prediction of TFBSs with either consensus or commonly used stochastic models such as Position-Specific Scoring Matrices (PSSMs) results in an unacceptably high number of hits consisting of a few true functional binding sites and numerous false non-functional binding sites. This is due to the inability of the models to incorporate higher order properties of sequences including sequences surrounding TFBSs and influencing the positioning of nucleosomes and/or the interactions that might occur between transcription factors.

View Article and Find Full Text PDF

Transcription factors (TFs) are key components in signaling pathways, and the presence of their binding sites in the promoter regions of DNA is essential for their regulation of the expression of the corresponding genes. Orthologous promoter sequences are commonly used to increase the specificity with which potentially functional transcription factor binding sites (TFBSs) are recognized and to detect possibly important similarities or differences between the different species. The ConTra (conserved TFBSs) web server provides the biologist at the bench with a user-friendly tool to interactively visualize TFBSs predicted using either TransFac (1) or JASPAR (2) position weight matrix libraries, on a promoter alignment of choice.

View Article and Find Full Text PDF

ORegAnno is an open-source, open-access database and literature curation system for community-based annotation of experimentally identified DNA regulatory regions, transcription factor binding sites and regulatory variants. The current release comprises 30 145 records curated from 922 publications and describing regulatory sequences for over 3853 genes and 465 transcription factors from 19 species. A new feature called the 'publication queue' allows users to input relevant papers from scientific literature as targets for annotation.

View Article and Find Full Text PDF

We introduce a method that considers target genes of a transcription factor, and searches for transcription factor binding sites (TFBSs) of secondary factors responsible for differential responses among these targets. Based on the distance difference matrix concept, the method simultaneously integrates statistical overrepresentation and co-occurrence of TFBSs. Our approach is validated on datasets of differentially regulated human genes and is shown to be highly effective in detecting TFBSs responsible for the observed differential gene expression.

View Article and Find Full Text PDF