Indium phosphide (InP) quantum dots (QDs) are considered the most promising alternative for Cd and Pb-based QDs for lighting and display applications. However, while core-only QDs of CdSe and CdTe have been prepared with near-unity photoluminescence quantum yield (PLQY), this is not yet achieved for InP QDs. Treatments with HF have been used to boost the PLQY of InP core-only QDs up to 85%.
View Article and Find Full Text PDFQuantum dots (QDs) are inorganic semiconductor nanocrystals capable of emitting light. The current major challenge lies in the use of heavy metals, which are known to be highly toxic to humans and pose significant environmental risks. Researchers have turned to indium (In) as a promising option for more environmentally benign QDs, specifically indium phosphide (InP).
View Article and Find Full Text PDFSolid-state light-emitting diodes (LEDs) emit nearly monochromatic light, yet seamless tuning of emission color throughout the visible region remains elusive. Color-converting powder phosphors are therefore used for making LEDs with a bespoke emission spectrum, yet broad emission lines and low absorption coefficients compromise the formation of small-footprint monochromatic LEDs. Color conversion by quantum dots (QDs) can address these issues, but high-performance monochromatic LEDs made using QDs free of restricted, hazardous elements remain to be demonstrated.
View Article and Find Full Text PDFWe studied the formation of zinc selenide (ZnSe) from zinc chloride (ZnCl2) and trioctylphosphine selenide (TOP=Se) in oleylamine, a chemistry originally proposed to grow ZnSe shells around InP core quantum dots. By monitoring the formation of ZnSe in reactions with and without InP seeds by quantitative absorbance and nuclear magnetic resonance (NMR) spectroscopy, we observe that the ZnSe formation rate is independent of the presence of InP cores. Similar to the seeded growth of CdSe and CdS, this observation supports a ZnSe growth mechanism through the inclusion of reactive ZnSe monomers that form homogeneously in the solution.
View Article and Find Full Text PDFTop-down liquid-phase exfoliation (LPE) and bottom-up hot-injection synthesis are scalable methods to produce colloids of two-dimensional (2D) van der Waals (vdW) solids. Generally thought off as two entirely different fields, we show that similar stabilization mechanisms apply to colloids of molybdenum disulfide (MoS) produced by both methods. By screening the colloidal stability of MoS produced in a hot-injection synthesis in a wide range of solvents, we observe that colloidal stability can be understood based on solution thermodynamics, wherein matching the solubility parameter of solvent and nanomaterial maximizes colloidal stability.
View Article and Find Full Text PDFTransition metal dichalcogenides (TMDs) are nanostructured semiconductors with prospects in optoelectronics and photocatalysis. Several bottom-up procedures to synthesize such materials have been developed yielding colloidal transition metal dichalcogenides (c-TMDs). Where such methods initially yielded multilayered sheets with indirect band gaps, recently, also the formation of monolayered c-TMDs became possible.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
For their unique optical properties, quantum dots (QDs) have been extensively used as light emitters in a number of photonic and optoelectronic applications. They even met commercialization success through their implementation in high-end displays with unmatched brightness and color rendering. For such applications, however, QDs must be shielded from oxygen and water vapor, which are known to degrade their optical properties over time.
View Article and Find Full Text PDFAtomically thin two-dimensional (2D) semiconductors are extensively investigated for optoelectronic applications that require strong light-matter interactions. In view of such applications, it is essential to understand how (photo)excitation alters the non-linear optical response of these materials under high carrier density conditions. Broadband transient absorption (TA) spectroscopy is by now a widely used tool to study the semiconductor physics in such highly excited systems.
View Article and Find Full Text PDFPhotoluminescent color conversion by quantum dots (QDs) makes possible the formation of spectrum-on-demand light sources by combining blue LEDs with the light generated by a specific blend of QDs. Such applications, however, require a near-unity photoluminescence quantum efficiency since self-absorption magnifies disproportionally the impact of photon losses on the overall conversion efficiency. Here, we present a synthesis protocol for forming InP-based QDs with +90% quantum efficiency across the full visible spectrum from blue/cyan to red.
View Article and Find Full Text PDFWe studied the dynamics of transfer of photoexcited electronic states in a bilayer of the two-dimensional transition metal dichalcogenide ReS and tetracene, with the aim to produce triplets in the latter. This material combination was used as the band gap of ReS (1.5 eV) is slightly larger than the triplet energy of tetracene (1.
View Article and Find Full Text PDFIn this work, we provide a detailed account of the liquid-phase exfoliation (LPE) of rhenium disulfide (ReS), a promising new-generation two-dimensional material. By screening LPE in a wide range of solvents, we show that the most optimal solvents are characterized by similar Hildebrand or dispersive Hansen solubility parameters of 25 and 18 MPa, respectively. Such values are attained by solvents such as -methyl-2-pyrrolidone, ,-dimethylformamide, and 1-butanol.
View Article and Find Full Text PDFIn recent years, hot injection synthesis has emerged as a promising route for the production of nanostructured transition metal dichalcogenides, in large due to its better control over the crystallinity and monodispersity compared to other solution based methods. Understanding the photophysics of excitons in the thus obtained colloidal nanosheets is of great importance to explore their potential for applications in optoelectronics. Here, we study the carrier dynamics in these few-layer colloidal WS nanosheets by use of broadband transient absorption spectroscopy.
View Article and Find Full Text PDF