Publications by authors named "Pieter L DeHaseth"

In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called "open complex" (also referred to as RP(o)). This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the -11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter.

View Article and Find Full Text PDF

The family of agn alleles in Escherichia coli pathovars encodes autotransporters that have been implicated in biofilm formation, autoaggregation, and attachment to cells. The alleles all have long leader RNAs preceding the Ag43 translation initiation codon. Here we present an analysis of the agn43 leader RNA from E.

View Article and Find Full Text PDF

Initiation of RNA synthesis from DNA templates by RNA polymerase (RNAP) is a multi-step process, in which initial recognition of promoter DNA by RNAP triggers a series of conformational changes in both RNAP and promoter DNA. The bacterial RNAP functions as a molecular isomerization machine, using binding free energy to remodel the initial recognition complex, placing downstream duplex DNA in the active site cleft and then separating the nontemplate and template strands in the region surrounding the start site of RNA synthesis. In this initial unstable "open" complex the template strand appears correctly positioned in the active site.

View Article and Find Full Text PDF

In promoter DNA, the preferred distance of the -10 and -35 elements for interacting with RNA polymerase-bound sigma(70) is 17 bp. However, the Devi et al. paper in this issue of Molecular Microbiology demonstrates that when the C-terminal domain of sigma(70), including the 3.

View Article and Find Full Text PDF

In bacteria, multiple sigmas direct RNA polymerase to distinct sets of promoters. Housekeeping sigmas direct transcription from thousands of promoters, whereas most alternative sigmas are more selective, recognizing more highly conserved promoter motifs. For sigma(32) and sigma(28), two Escherichia coli Group 3 sigmas, altering a few residues in Region 2.

View Article and Find Full Text PDF

Bacterial RNA polymerase and a "sigma" transcription factor form an initiation-competent "open" complex at a promoter by disruption of about 14 base pairs. Strand separation is likely initiated at the highly conserved -11 A-T base pair. Amino acids in conserved region 2.

View Article and Find Full Text PDF

Initiation of transcription is an important target for regulation of gene expression. In bacteria, the formation of a transcription-competent complex between RNA polymerase and a promoter involves DNA strand separation over a stretch of about 14 base pairs. Aromatic and basic residues in conserved region 2.

View Article and Find Full Text PDF

The heat shock sigma factor (sigma(32) in Escherichia coli) directs the bacterial RNA polymerase to promoters of a specific sequence to form a stable complex, competent to initiate transcription of genes whose products mitigate the effects of exposure of the cell to high temperatures. The histidine at position 107 of sigma(32) is at the homologous position of a tryptophan residue at position 433 of the main sigma factor of E. coli, sigma(70).

View Article and Find Full Text PDF

Formation of the stable, strand separated, 'open' complex between RNA polymerase and a promoter involves DNA melting of approximately 14 base pairs. The likely nucleation site is the highly conserved -11A base in the non-template strand of the -10 promoter region. Amino acid residues Y430 and W433 on the sigma70 subunit of the RNA polymerase participate in the strand separation.

View Article and Find Full Text PDF

Formation of the strand-separated, open complex between RNA polymerase and a promoter involves several intermediates, the first being the closed complex in which the DNA is fully base-paired. This normally short lived complex has been difficult to study. We have used a mutant Escherichia coli RNA polymerase, deficient in promoter DNA melting, and variants of the P(R) promoter of bacteriophage lambda to model the closed complex intermediate at physiologically relevant temperatures.

View Article and Find Full Text PDF

Upon the exposure of Escherichia coli to high temperature (heat shock), cellular levels of the transcription factor sigma32 rise greatly, resulting in the increased formation of the sigma32 holoenzyme, which is capable of transcription initiation at heat shock promoters. Higher levels of heat shock proteins render the cell better able to cope with the effects of higher temperatures. To conduct structure-function studies on sigma32 in vivo, we have carried out site-directed mutagenesis and employed a previously developed system involving sigma32 expression from one plasmid and a beta-galactosidase reporter gene driven by the sigma32-dependent groE promoter on another in order to monitor the effects of single amino acid substitutions on sigma32 activity.

View Article and Find Full Text PDF

Formation of strand-separated, functional complexes at promoters was compared for RNA polymerases from the mesophile Escherichia coli and the thermophile Thermus aquaticus. The RNA polymerases contained sigma factors that were wild type or bearing homologous alanine substitutions for two aromatic amino acids involved in DNA melting. Substitutions in the sigmaA subunit of T.

View Article and Find Full Text PDF

Transcription initiation is a major target for the regulation of gene expression in all organisms. Transcription activators can stimulate different steps in the initiation process including the initial binding of RNA polymerase (RNAP) to the promoter and a subsequent promoter-melting step. Typically, kinetic assays are required to determine whether an activator exerts its effect on the initial binding of RNAP or on the promoter-melting step.

View Article and Find Full Text PDF

The Escherichia coli transcription factor sigma 32 binds to core RNA polymerase to form the holoenzyme responsible for transcription initiation at heat shock promoters, utilized upon exposure of the cell to higher temperatures. We have developed two ways to assay sigma 32-dependent RNA synthesis in E. coli.

View Article and Find Full Text PDF

Strand separation in promoter DNA induced by Escherichia coli RNA polymerase is likely initiated at a conserved A residue at position -11 of the nontemplate strand. Here we describe the use of fluorescence techniques to study the interaction of RNA polymerase with the -11 base. Forked DNA templates were employed, containing the fluorescent base, 2-aminopurine (2AP), substituted at the -11 position in a single-stranded tail comprising the nucleotides on the nontemplate strand at which base pairing is disrupted in an RNA polymerase-promoter complex.

View Article and Find Full Text PDF

RNA polymerase forms competitor-resistant complexes with "forked DNA" templates that are double-stranded from the -35 promoter region through the first base pair of the -10 region, with an additional unpaired A at the 3' end of the nontemplate strand. These types of substrates were introduced recently as model templates for the study of DNA-protein interactions occurring in the early stages of the formation of RNA polymerase-promoter open complexes. We have performed kinetic and equilibrium measurements of interactions of wild-type and mutant RNA polymerases bearing substitutions in the sigma(70) initiation factor, with forked DNA of wild-type and mutant sequence.

View Article and Find Full Text PDF