We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism.
View Article and Find Full Text PDFEfficient tissue-specific delivery is a crucial factor in the successful development of therapeutic oligonucleotides. Screening for novel delivery methods with unique tissue-homing properties requires a rapid, sensitive, flexible and unbiased technique able to visualize the in vivo biodistribution of these oligonucleotides. Here, we present whole body scanning PCR, a platform that relies on the local extraction of tissues from a mouse whole body section followed by the conversion of target-specific qPCR signals into an image.
View Article and Find Full Text PDF8-(N-2-hydroxy-5-chlorobenzoyl)-amino-caprylic acid (5-CNAC), a compound lacking pharmacological activity enhances the absorption of salmon calcitonin, when co-administered. Disposition and biotransformation of 5-CNAC was studied in six healthy postmenopausal women following a single oral dose of 200mg (14)C-radiolabeled 5-CNAC (as disodium monohydrate salt). Blood, plasma, urine and feces collected over 7 days were analyzed for radioactivity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2006
The threshold model can be used to generate random networks of arbitrary size with given local properties such as the degree distribution, clustering, and degree correlation. We summarize the properties of networks created using the threshold model and present an alternative deterministic construction. These networks are threshold graphs and therefore contain a highly compressible layered structure and allow computation of important network properties in linear time.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
July 2006
Solifenacin succinate (YM905) is a new, once-daily, orally administered muscarinic receptor antagonist designed to treat overactive bladder. The metabolism of solifenacin involves hepatic cytochrome P450 (CYP) 3A4; therefore, the pharmacokinetics of solifenacin may be affected by drugs that inhibit CYP3A4. This study aimed to examine the effects of co-administration of ketoconazole, a potent CYP3A4 inhibitor, on the pharmacokinetics of solifenacin in healthy volunteers.
View Article and Find Full Text PDFSuc-HSA is a potent HIV-inhibitor with possible application in man. To facilitate the assessment of dosing regimens for future phase I clinical studies, we predicted the pharmacokinetic properties of Suc-HSA in man. Slices prepared from rat, monkey and human liver were incubated with succinylated albumin, and the maximum uptake rate V(m) and Michaelis-Menten constant K(m) were calculated.
View Article and Find Full Text PDFJ Clin Pharmacol
September 2004
The pharmacokinetic profile of solifenacin succinate (YM905; Vesicare), a new once-daily bladder-selective muscarinic receptor antagonist, was examined in 2 controlled trials of healthy young men. A single-dose study evaluated 5-, 10-, 20-, 40-, 60-, 80-, and 100-mg doses. A multidose study evaluated 5-, 10-, 20-, and 30-mg doses.
View Article and Find Full Text PDFLactoferrin (Lf) is a potential drug candidate for the treatment of oropharyngeal Candida infections. However, for an effective therapeutic treatment an appropriate dosage form is required. Therefore a mucoadhesive tablet for buccal application was developed.
View Article and Find Full Text PDF