Publications by authors named "Pieter J Smeets"

Article Synopsis
  • - Recent research has focused on understanding how methane is oxidized by a special type of material called inorganic Cu-ZSM-5 biomimic.
  • - The study identifies the reactive intermediates that play a role in the methane oxidation process, which is crucial for improving methane utilization.
  • - This molecular insight not only aims to enhance the use of methane, a widely available resource, but also to shed light on how real copper-containing oxidation enzymes function.
View Article and Find Full Text PDF

Cu/O2 intermediates in biological, homogeneous, and heterogeneous catalysts exhibit unique spectral features that reflect novel geometric and electronic structures that make significant contributions to reactivity. This review considers how the respective intermediate electronic structures overcome the spin-forbidden nature of O2 binding, activate O2 for electrophilic aromatic attack and H-atom abstraction, catalyze the 4 e- reduction of O2 to H2O, and discusses the role of exchange coupling between Cu ions in determining reactivity.

View Article and Find Full Text PDF

The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu(2)O](2+). In this communication we report the formation of an O(2)-precursor of this reactive site with an associated absorption band at 29,000 cm(-1). Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by (18)O(2) isotope sensitive and insensitive vibrations, νO-O and νCu-Cu, at 736 (Δ(18)O(2) = 41 cm(-1)) and 269 cm(-1), respectively.

View Article and Find Full Text PDF

Zeolites containing transition-metal ions (TMIs) often show promising activity as heterogeneous catalysts in pollution abatement and selective oxidation reactions. In this paper, two aspects of research on the TMIs Cu, Co, and Fe in zeolites are discussed: (i) coordination to the lattice and (ii) activated oxygen species. At low loading, TMIs preferably occupy exchange sites in six-membered oxygen rings (6MR), where the TMIs preferentially coordinate with the O atoms of Al tetrahedra.

View Article and Find Full Text PDF

Driven by the depletion of crude oil, the direct oxidation of methane to methanol has been of considerable interest. Promising low-temperature activity of an oxygen-activated zeolite, Cu-ZSM-5, has recently been reported in this selective oxidation and the active site in this reaction correlates with an absorption feature at 22,700 cm(-1). In the present study, this absorption band is used to selectively resonance enhance Raman vibrations of this active site.

View Article and Find Full Text PDF

This work reports on the capability of the O2-activated Cu-ZSM-5 and Cu-MOR zeolites to selectively convert methane into methanol at a temperature of 398 K. A strong correlation between (i) the activity and (ii) the intensity of the 22 700 cm-1 UV-vis band, assigned to the bis(mu-oxo)dicopper core, is found (i) as a function of the reaction temperature, (ii) as a function of the Cu loading of the zeolite, and (iii) in comparison to other Cu materials. These three lines of evidence firmly support the key role of the bis(mu-oxo)dicopper core in this selective, low-temperature hydroxylation of methane.

View Article and Find Full Text PDF