Publications by authors named "Pieter J Dejong"

The largest genus in the conifer family Pinaceae is Pinus, with over 100 species. The size and complexity of their genomes (∼20-40 Gb, 2n = 24) have delayed the arrival of a well-annotated reference sequence. In this study, we present the annotation of the first whole-genome shotgun assembly of loblolly pine (Pinus taeda L.

View Article and Find Full Text PDF

Background: The size and complexity of conifer genomes has, until now, prevented full genome sequencing and assembly. The large research community and economic importance of loblolly pine, Pinus taeda L., made it an early candidate for reference sequence determination.

View Article and Find Full Text PDF

Background: Fluorescent reporters are useful for assaying gene expression in living cells and for identifying and isolating pure cell populations from heterogeneous cultures, including embryonic stem (ES) cells. Multiple fluorophores and genetic selection markers exist; however, a system for creating reporter constructs that preserve the regulatory sequences near a gene's native ATG start site has not been widely available.

Methodology: Here, we describe a series of modular marker plasmids containing independent reporter, bacterial selection, and eukaryotic selection components, compatible with both Gateway recombination and lambda prophage bacterial artificial chromosome (BAC) recombineering techniques.

View Article and Find Full Text PDF
Article Synopsis
  • - A high-quality draft genome sequence of the domestic dog has been completed, revealing its evolutionary significance and the diverse traits among various breeds.
  • - The research includes a detailed map of single nucleotide polymorphisms (SNPs), which helps understand genetic diversity within and among dog breeds.
  • - This SNP map facilitates genome-wide association studies that can identify genes linked to diseases and traits, benefiting both human and canine health.
View Article and Find Full Text PDF

Array-based comparative genomic hybridization (aCGH) is a recently developed tool for genome-wide determination of DNA copy number alterations. This technology has tremendous potential for disease-gene discovery in cancer and developmental disorders as well as numerous other applications. However, widespread utilization of a CGH has been limited by the lack of well characterized, high-resolution clone sets optimized for consistent performance in aCGH assays and specifically designed analytic software.

View Article and Find Full Text PDF

The anticipated completion of two of the most biomedically relevant genomes, mouse and human, within the next three years provides an unparalleled opportunity for the large-scale exploration of genome evolution. Targeted sequencing of genomic regions in a panel of primate species and comparison to reference genomes will provide critical insight into the nature of single-base pair variation, mechanisms of chromosomal rearrangement, patterns of selection, and species adaptation. Although not recognized as model "genetic organisms" because of their longevity and low fecundity, 30 of the approximately 300 primate species are targets of biomedical research.

View Article and Find Full Text PDF