Publications by authors named "Pieter Dikkes"

The search for therapeutic targets to prevent neurons from dying is ongoing and involves the exploration of a long list of neurotrophic factors. Insulin-like growth factor 2 (IGF2) is a member of the insulin family with known neurotrophic properties. In this study, we used Igf2 knockout (Igf2) neonate mice to determine whether Igf2 deficiency is detrimental to motor neuron survival after axonal injury.

View Article and Find Full Text PDF

The function of glycogen in the placenta remains controversial. Whether it is used as a source of fuel for placental consumption or by the fetus in times of need has yet to be determined. Two imprinted genes, insulin-like growth factor 2 (Igf2) and H19 are highly expressed in the placenta.

View Article and Find Full Text PDF

Insulin-like growth factor 2 (Igf2), a member of the insulin gene family, is important for brain development and has known neurotrophic properties. Though Igf2, its receptors, and binding proteins, are expressed in the adult CNS, their role in the adult brain is less well-understood. Here we studied how Igf2 deficiency affects brains of adult Igf2 knockout (Igf2(-/-)) mice following neurotoxic insult produced by the glutamate analog kainic acid (KA).

View Article and Find Full Text PDF

Here we studied the role of signaling through ErbB-family receptors in interactions between unmyelinated axons and non-myelinating Schwann cells in adult nerves. We generated transgenic mice that postnatally express a dominant-negative ErbB receptor in non-myelinating but not in myelinating Schwann cells. These mutant mice present a progressive peripheral neuropathy characterized by extensive Schwann cell proliferation and death, loss of unmyelinated axons and marked heat and cold pain insensitivity.

View Article and Find Full Text PDF

Insulin resistance and diabetes might promote neurodegenerative disease, but a molecular link between these disorders is unknown. Many factors are responsible for brain growth, patterning, and survival, including the insulin-insulin-like growth factor (IGF)-signaling cascades that are mediated by tyrosine phosphorylation of insulin receptor substrate (IRS) proteins. Irs2 signaling mediates peripheral insulin action and pancreatic beta-cell function, and its failure causes diabetes in mice.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (Cdk5) is activated on binding of activator proteins p35 and p39. A N-terminally truncated p35, termed p25, is generated through cleavage by the Ca(2+)-dependent protease calpain after induction of ischemia in rat brain. p25 has been shown to accumulate in brains of patients with Alzheimer's disease and may contribute to A-beta peptide-mediated toxicity.

View Article and Find Full Text PDF

Background: This study was conducted to investigate, in vivo, the dose and duration effects of ketamine administration on neuronal degeneration in the developing rat brain.

Methods: Seven-day-old (P7) Sprague-Dawley rats were treated with intraperitoneal injections of ketamine, a noncompetitive N-methyl-D-aspartate receptor antagonist. Degenerating neurones were identified by the cupric-silver stain from 10 brain regions using the stereological disector method.

View Article and Find Full Text PDF

Growth factor suppression of apoptosis correlates with the phosphorylation and inactivation of multiple proapoptotic proteins, including the BCL-2 family member BAD. However, the physiological events required for growth factors to block cell death are not well characterized. To assess the contribution of BAD inactivation to cell survival, we generated mice with point mutations in the BAD gene that abolish BAD phosphorylation at specific sites.

View Article and Find Full Text PDF

Angelman syndrome (AS), characterized by motor dysfunction, mental retardation, and seizures, is caused by several genetic etiologies involving chromosome 15q11-q13, including mutations of the UBE3A gene. UBE3A encodes UBE3A/E6-AP, a ubiquitin-protein ligase, and shows brain-specific imprinting, with brain expression predominantly from the maternal allele. Lack of a functional maternal allele of UBE3A causes AS.

View Article and Find Full Text PDF

The intermediate filament glial fibrillary acidic protein (GFAP) is a classic marker for several types of glial cells, including astrocytes and nonmyelinating Schwann cells. The pattern of expression of GFAP in the postnatal murine inner ear, from postnatal day 3 (P3) to P38, was studied by anti-GFAP immunostaining in wild-type mice as well as in two lines of transgenic mice expressing either beta-galactosidase (LacZ) or green fluorescent protein (GFP) under the control of the GFAP promoter. Analysis of protein and promoter activity shows that several classes of supporting cells in the sensory epithelia, as well as Schwann cells and satellite cells express GFAP.

View Article and Find Full Text PDF