Neuropsychopharmacology
December 2024
The globus pallidus externus (GPe) is a central component of the basal ganglia circuit that acts as a gatekeeper of cocaine-induced behavioral plasticity. However, the molecular and circuit mechanisms underlying this function are unknown. Here, we show that GPe parvalbumin-positive (GPe) cells mediate cocaine responses by selectively modulating ventral tegmental area dopamine (VTA) cells projecting to the dorsomedial striatum (DMS).
View Article and Find Full Text PDFThe globus pallidus externus (GPe) is a central component of the basal ganglia circuit, receiving strong input from the indirect pathway and regulating a variety of functions, including locomotor output and habit formation. We recently showed that it also acts as a gatekeeper of cocaine-induced behavioral plasticity, as inhibition of parvalbumin-positive cells in the GPe (GPe ) prevents the development of cocaine-induced reward and sensitization. However, the molecular and circuit mechanisms underlying this function are unknown.
View Article and Find Full Text PDFUse of one drug of abuse typically influences the behavioral response to other drugs, either administered at the same time or a subsequent time point. The nature of the drugs being used, as well as the timing and dosing, also influence how these drugs interact. Here, we tested the effects of adolescent THC exposure on the development of morphine-induced behavioral adaptations following repeated morphine exposure during adulthood.
View Article and Find Full Text PDFResearch shows that brain circuits controlling vital physiological processes are closely linked with endogenous time-keeping systems. In this study, we aimed to examine oscillatory gene expression patterns of well-characterized neuronal circuits by reanalyzing publicly available transcriptomic data from a spatiotemporal gene expression atlas of a non-human primate. Unexpectedly, brain structures known for regulating circadian processes (e.
View Article and Find Full Text PDFIn this study, we conducted high-throughput spatiotemporal analysis of primary cilia length and orientation across 22 mouse brain regions. We developed automated image analysis algorithms, which enabled us to examine over 10 million individual cilia, generating the largest spatiotemporal atlas of cilia. We found that cilia length and orientation display substantial variations across different brain regions and exhibit fluctuations over a 24-hour period, with region-specific peaks during light-dark phases.
View Article and Find Full Text PDFAlthough midbrain dopamine (DA) circuits are central to motivated behaviors, our knowledge of how experience modifies these circuits to facilitate subsequent behavioral adaptations is limited. Here we demonstrate the selective role of a ventral tegmental area DA projection to the amygdala (VTA→amygdala) for cocaine-induced anxiety but not cocaine reward or sensitization. Our rabies virus-mediated circuit mapping approach reveals a persistent elevation in spontaneous and task-related activity of inhibitory GABAergic cells from the bed nucleus of the stria terminalis (BNST) and downstream VTA→amygdala cells that can be detected even after a single cocaine exposure.
View Article and Find Full Text PDFDecades of research have revealed the remarkable complexity of the midbrain dopamine (DA) system, which comprises cells principally located in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular function, the midbrain DA system is instead composed of distinct cell populations that (1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are characterized by unique transcriptional and physiological signatures. To appreciate how these differences relate to circuit function, we first need to understand the anatomical connectivity of unique DA pathways and how this connectivity relates to DA-dependent motivated behavior.
View Article and Find Full Text PDFObjective: Deep brain stimulation (DBS) has been used as a treatment of last resort for treatment-resistant depression (TRD) for more than a decade. Many DBS targets have been proposed and tested clinically, but the underlying circuit mechanisms remain unclear. Uncovering white matter tracts (WMT) activated by DBS targets may provide crucial information about the circuit substrates mediating DBS efficacy in ameliorating TRD.
View Article and Find Full Text PDF