Publications by authors named "Pieter De Meutter"

A global network of monitoring stations is set up that can measure tiny concentrations of airborne radioactivity as part of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty. If Treaty-relevant detections are made, inverse atmospheric transport modelling is one of the methods that can be used to determine the source of the radioactivity. In order to facilitate the testing of novel developments in inverse modelling, two sets of test cases are constructed using real-world Xe detections associated with routine releases from a medical isotope production facility.

View Article and Find Full Text PDF

Airborne concentrations of specific radioactive xenon isotopes (referred to as "radioxenon") are monitored globally as part of the verification regime of the Comprehensive Nuclear-Test-Ban Treaty, as these could be the signatures of a nuclear explosion. However, civilian nuclear facilities emit a regulated amount of radioxenon that can interfere with the very sensitive monitoring network. One approach to deal with this civilian background of radioxenon for Treaty verification purposes, is to explicitly simulate the expected radioxenon concentration from civilian sources at monitoring stations using atmospheric transport modelling.

View Article and Find Full Text PDF

In April 2020, several wildfires took place in and around the Chernobyl exclusion zone. These fires reintroduced radioactive particles deposited during the 1986 Chernobyl disaster into the atmosphere, causing concern about a possible radiation hazard. Several countries and several stations of the International Monitoring System measured increased Cs137 levels.

View Article and Find Full Text PDF

Atmospheric transport and dispersion models are important tools in radiation protection as they help to estimate the impact of radionuclides released into the atmosphere. In particular, such models can be used in combination with radionuclide observations to estimate unknown source term parameters, or to improve source term estimates obtained through other methods. In this paper, a Bayesian inference system was used to determine the source term parameters and their corresponding credible intervals of a real-world anomalous Se release at a nuclear facility in Belgium.

View Article and Find Full Text PDF

The International Monitoring System is being set up aiming to detect violations of the Comprehensive Nuclear-Test-Ban Treaty. Suspicious radioxenon detections were made by the International Monitoring System after the third announced nuclear test conducted by the Democratic People's Republic of Korea (DPRK). In this paper, inverse atmospheric transport and dispersion modelling was applied to these detections, to determine the source location, the release term and its associated uncertainties.

View Article and Find Full Text PDF

After performing a first multi-model exercise in 2015 a comprehensive and technically more demanding atmospheric transport modelling challenge was organized in 2016. Release data were provided by the Australian Nuclear Science and Technology Organization radiopharmaceutical facility in Sydney (Australia) for a one month period. Measured samples for the same time frame were gathered from six International Monitoring System stations in the Southern Hemisphere with distances to the source ranging between 680 (Melbourne) and about 17,000 km (Tristan da Cunha).

View Article and Find Full Text PDF

The capability of the noble gas component of the International Monitoring System as a verification tool for the Comprehensive Nuclear-Test-Ban Treaty is deteriorated by a background of radioxenon emitted by civilian sources. One of the possible approaches to deal with this issue, is to simulate the daily radioxenon concentrations from these civilian sources at noble gas stations by using atmospheric transport models. In order to accurately quantify the contribution from these civilian sources, knowledge on the releases is required.

View Article and Find Full Text PDF

On 6 January 2016, the Democratic People's Republic of Korea announced to have conducted its fourth nuclear test. Analysis of the corresponding seismic waves from the Punggye-ri nuclear test site showed indeed that an underground man-made explosion took place, although the nuclear origin of the explosion needs confirmation. Seven weeks after the announced nuclear test, radioactive xenon was observed in Japan by a noble gas measurement station of the International Monitoring System.

View Article and Find Full Text PDF

Knowledge on the global radioxenon background is imperative for the Comprehensive Nuclear-Test-Ban Treaty verification. In this paper, the capability to simulate the radioxenon background from regional sources is assessed at two International Monitoring System stations in Europe. An ensemble dispersion modeling approach is used to quantify uncertainty by making use of a subset of the Ensemble Prediction System of the European Centre for Medium-Range Weather Forecasts.

View Article and Find Full Text PDF