Publications by authors named "Pieter Blom"

Since the discovery of complete ammonia oxidizers (comammox) within the genus , their distribution and abundance across habitats have been intensively studied to better understand their ecological significance. Many primers targeting their ammonia monooxygenase subunit A gene () have been designed to detect and quantify comammox bacteria and to describe their community structure. We identified 38 published primers, but only few had high coverage and specificity for all known comammox or one of the two described subclades.

View Article and Find Full Text PDF

Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies.

View Article and Find Full Text PDF

Nitrogen (N) fertilization is crucial to sustain global food security, but fertilizer N production is energy-demanding and subsequent environmental N losses contribute to biodiversity loss and climate change. N losses can be mitigated be interfering with microbial nitrification, and therefore the use of nitrification inhibitors in enhanced efficiency fertilizers (EEFs) is an important N management strategy to increase N use efficiency and reduce N pollution. However, currently applied nitrification inhibitors have limitations and do not target all nitrifying microorganisms.

View Article and Find Full Text PDF

The advance of metagenomics in combination with intricate cultivation approaches has facilitated the discovery of novel ammonia-, methane-, and other short-chain alkane-oxidizing microorganisms, indicating that our understanding of the microbial biodiversity within the biogeochemical nitrogen and carbon cycles still is incomplete. The in situ detection and phylogenetic identification of novel ammonia- and alkane-oxidizing bacteria remain challenging due to their naturally low abundances and difficulties in obtaining new isolates from complex samples. Here, we describe an activity-based protein profiling protocol allowing cultivation-independent unveiling of ammonia- and alkane-oxidizing bacteria.

View Article and Find Full Text PDF

Verrucomicrobial methanotrophs are a group of aerobic bacteria isolated from volcanic environments. They are acidophiles, characterized by the presence of a particulate methane monooxygenase (pMMO) and a XoxF-type methanol dehydrogenase (MDH). Metagenomic analysis of DNA extracted from the soil of Favara Grande, a geothermal area on Pantelleria Island, Italy, revealed the presence of two verrucomicrobial Metagenome Assembled Genomes (MAGs).

View Article and Find Full Text PDF
Article Synopsis
  • The Favara Grande is a geothermal area in Italy with extreme conditions (high temperature, low pH) that may support unique microbial life, particularly chemolithotrophic thermoacidophiles.
  • Researchers successfully isolated a new methanotrophic strain (AP8) from soil samples taken from this region, which thrives in hot, acidic environments and shows potential for methane utilization.
  • The study provides insights into the genetic and physiological characteristics of this strain, highlighting its adaptations to harsh conditions and contributing to the broader understanding of microbial ecology in geothermal settings.
View Article and Find Full Text PDF