Hair follicles cyclically regenerate throughout adult mammalian life, owing to a resident population of epithelial hair follicle stem cells. Stem cell (SC) activity drives bouts of follicle growth, which are periodically interrupted by follicle regression and rest. These phases and the transitions between them are tightly spatiotemporally coordinated by signalling crosstalk between stem/progenitor cells and the various cell types of the microenvironment, or niche.
View Article and Find Full Text PDFThe interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans However, the degree to which trans-action was supported varied greatly between enhancers.
View Article and Find Full Text PDF