Publications by authors named "Pietenpol J"

Obesity is an established risk factor for breast cancer development and poor prognosis. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression, and TREM2, a transmembrane receptor expressed on macrophages in adipose tissue and tumors, is an emerging therapeutic target for cancer. A better understanding of the mechanisms for the obesity-breast cancer association and the potential benefits of weight loss could help inform treatment strategies.

View Article and Find Full Text PDF

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and generate prognostic and predictive biomarkers. We analyzed single-cell, spatial data from three multiplex imaging technologies: cyclic immunofluorescence (CycIF) data we generated from 102 breast cancer patients with clinical follow-up, and publicly available imaging mass cytometry and multiplex ion-beam imaging datasets. Similar single-cell phenotyping results across imaging platforms enabled combined analysis of epithelial phenotypes to delineate prognostic subtypes among estrogen-receptor positive (ER+) patients.

View Article and Find Full Text PDF

Importance: Young Black women bear a disproportionate burden of breast cancer deaths compared with White women, yet they remain underrepresented in genomic studies.

Objective: To evaluate the association of biological factors, including West African genetic ancestry, and nonbiological factors with disease-free survival (DFS) among young Black women with breast cancer.

Design, Setting, And Participants: This observational cohort study included Black women diagnosed with invasive breast cancer between January 1, 2005, and December 31, 2016.

View Article and Find Full Text PDF

Obesity is an established risk factor for breast cancer development and worsened prognosis; however, the mechanisms for this association - and the potential benefits of weight loss - have not been fully explored. The adipose environment surrounding breast tumors, which is inflamed in obesity, has been implicated in tumor progression. An emerging therapeutic target for cancer is TREM2, a transmembrane receptor of the immunoglobulin superfamily that is expressed on macrophages in adipose tissue and tumors.

View Article and Find Full Text PDF

Unlabelled: Combinations of immune checkpoint inhibitors (ICI, including anti-PD-1/PD-L1) and chemotherapy have been FDA approved for metastatic and early-stage triple-negative breast cancer (TNBC), but most patients do not benefit. B7-H4 is a B7 family ligand with proposed immunosuppressive functions being explored as a cancer immunotherapy target and may be associated with anti-PD-L1 resistance. However, little is known about its regulation and effect on immune cell function in breast cancers.

View Article and Find Full Text PDF

Importance: Agents targeting programmed death ligand 1 (PD-L1) have demonstrated efficacy in triple-negative breast cancer (TNBC) when combined with chemotherapy and are now the standard of care in patients with PD-L1-positive metastatic disease. In contrast to microtubule-targeting agents, the effect of combining platinum compounds with programmed cell death 1 (PD-1)/PD-L1 immunotherapy has not been extensively determined.

Objective: To evaluate the efficacy of atezolizumab with carboplatin in patients with metastatic TNBC.

View Article and Find Full Text PDF

Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. p73 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium.

View Article and Find Full Text PDF

Unlabelled: Despite the success of immune checkpoint inhibition (ICI) in treating cancer, patients with triple-negative breast cancer (TNBC) often develop resistance to therapy, and the underlying mechanisms are unclear. MHC-I expression is essential for antigen presentation and T-cell-directed immunotherapy responses. This study demonstrates that TNBC patients display intratumor heterogeneity in regional MHC-I expression.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN.

View Article and Find Full Text PDF

Spatial profiling of tissues promises to elucidate tumor-microenvironment interactions and enable development of spatial biomarkers to predict patient response to immunotherapy and other therapeutics. However, spatial biomarker discovery is often carried out on a single patient cohort or imaging technology, limiting statistical power and increasing the likelihood of technical artifacts. In order to analyze multiple patient cohorts profiled on different platforms, we developed methods for comparative data analysis from three disparate multiplex imaging technologies: 1) cyclic immunofluorescence data we generated from 102 breast cancer patients with clinical follow-up, in addition to publicly available 2) imaging mass cytometry and 3) multiplex ion-beam imaging data.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a collection of biologically diverse cancers characterized by distinct transcriptional patterns, biology, and immune composition. TNBCs subtypes include two basal-like (BL1, BL2), a mesenchymal (M) and a luminal androgen receptor (LAR) subtype. Through a comprehensive analysis of mutation, copy number, transcriptomic, epigenetic, proteomic, and phospho-proteomic patterns we describe the genomic landscape of TNBC subtypes.

View Article and Find Full Text PDF

p53 is mutated in over half of human cancers. In addition to losing wild-type (WT) tumor-suppressive function, mutant p53 proteins are proposed to acquire gain-of-function (GOF) activity, leading to novel oncogenic phenotypes. To study mutant p53 GOF mechanisms and phenotypes, we genetically engineered non-transformed and tumor-derived WT p53 cell line models to express endogenous missense mutant p53 (R175H and R273H) or to be deficient for p53 protein (null).

View Article and Find Full Text PDF

p73 and p63 are members of the p53 family that exhibit overlapping and distinct functions in development and homeostasis. The evaluation of p73 and p63 isoform expression across human tissue can provide greater insight to the functional interactions between family members. We determined the mRNA isoform expression patterns of TP73 and TP63 across a panel of 36 human tissues and protein expression within the highest-expressing tissues.

View Article and Find Full Text PDF

MYC family members, MYC, MYCN, and MYCL, are oncogenic transcription factors that regulate the expression of genes involved in normal development, cell growth, proliferation, metabolism, and survival. While MYC is amplified and/or overexpressed across a variety of tissue types, MYCN is often overexpressed in tumors of the nervous system (neuroblastoma and medulloblastoma) or with neuroendocrine features (neuroendocrine prostate cancer). Given recent reports that MYCN expression is also deregulated in a variety of non-neuronal tissue types, we investigated whether MYCN was also deregulated in triple-negative breast cancer (TNBC).

View Article and Find Full Text PDF

It is unclear whether racial/ethnic disparities in triple-negative breast cancer (TNBC) mortality remain after accounting for clinical characteristics, treatment, and access-to-care-related factors. In this study, women with a primary diagnosis of TNBC during 2010-2014 were identified from the National Cancer Database. Hazard ratios (HR) and 95% confidence intervals (CI) for 3- and 5-year all-cause mortality associated with race/ethnicity were estimated using Cox proportional hazards models with stepwise adjustments for age, clinical characteristics, treatment, and access-to-care-related factors.

View Article and Find Full Text PDF

Integrating different types of data, including electronic health records, imaging data, administrative and claims databases, large data repositories, the Internet of Things, genomics, and other omics data, is both a challenge and an opportunity that must be tackled head on. We explore some of the challenges and opportunities in optimizing data integration to accelerate breast cancer discovery and improve patient outcomes. Susan G.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)-targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC.

View Article and Find Full Text PDF

Purpose: Preclinical data demonstrating androgen receptor (AR)-positive (AR) triple-negative breast cancer (TNBC) cells are sensitive to AR antagonists, and PI3K inhibition catalyzed an investigator-initiated, multi-institutional phase Ib/II study TBCRC032. The trial investigated the safety and efficacy of the AR-antagonist enzalutamide alone or in combination with the PI3K inhibitor taselisib in patients with metastatic AR (≥10%) breast cancer.

Patients And Methods: Phase Ib patients [estrogen receptor positive (ER) or TNBC] with AR breast cancer received 160 mg enzalutamide in combination with taselisib to determine dose-limiting toxicities and the maximum tolerated dose (MTD).

View Article and Find Full Text PDF

p63 is a transcriptional regulator of ectodermal development that is required for basal cell proliferation and stem cell maintenance. p73 is a closely related p53 family member that is expressed in select p63-positive basal cells and can heterodimerize with p63. p73-/- mice lack multiciliated cells and have reduced numbers of basal epithelial cells in select tissues; however, the role of p73 in basal epithelial cells is unknown.

View Article and Find Full Text PDF

Melanomas are characterized by driver and loss-of-function mutations that promote mitogen-activated protein kinase (MAPK) signaling. MEK inhibitors are approved for use in BRAF-mutated melanoma; however, early-phase clinical trials show occasional responses in driver-negative melanoma, suggesting other alterations conferring MAPK/ERK dependency. To identify additional structural alterations in melanoma, we evaluated RNA-Seq from a set of known MAPK/ERK regulators using a novel population-based algorithm in The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct cerebrospinal fluid circulation. Thus, PCP disruption results in ciliopathies and hydrocephalus.

View Article and Find Full Text PDF

We report that p73 is expressed in ovarian granulosa cells and that loss of p73 leads to attenuated follicle development, ovulation, and corpus luteum formation, resulting in decreased levels of circulating progesterone and defects in mammary gland branching. Ectopic progesterone in p73-deficient mice completely rescued the mammary branching and partially rescued the ovarian follicle development defects. Performing RNA sequencing (RNA-seq) on transcripts from murine wild-type and p73-deficient antral follicles, we discovered differentially expressed genes that regulate biological adhesion programs.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) is a heterogeneous disease that lacks unifying molecular alterations that can guide therapy decisions. We previously identified distinct molecular subtypes of TNBC (TNBCtype) using gene expression data generated on a microarray platform using frozen tumor specimens. Tumors and cell lines representing the identified subtypes have distinct enrichment in biologically relevant transcripts with differing sensitivity to standard chemotherapies and targeted agents.

View Article and Find Full Text PDF

Because of inherent disease heterogeneity, targeted therapies have eluded triple-negative breast cancer (TNBC), and biomarkers predictive of treatment response have not yet been identified. This study was designed to determine whether the mTOR inhibitor everolimus with cisplatin and paclitaxel would provide synergistic antitumor effects in TNBC. Patients with stage II/III TNBC were enrolled in a randomized phase II trial of preoperative weekly cisplatin, paclitaxel and daily everolimus or placebo for 12 weeks, until definitive surgery.

View Article and Find Full Text PDF