Publications by authors named "Piet Stammes"

Sirius was spotted with the naked eye at broad daylight by looking along the finder of a 1 m telescope on La Palma Observatory at a 2370 m height. Sun elevation was 73°; Sirius was nearly straight under the Sun at 37° elevation. The sky radiance, although not recorded directly, could be determined from the simultaneously obtained high-precision wavelength-dependent sky polarization data near Sirius.

View Article and Find Full Text PDF

Motivated by several observations of the degree of linear polarization of skylight in the oxygen A (O(2)A) band that do not yet have a quantitative explanation, we analyze the influence of aerosol altitude, microphysics, and optical thickness on the degree of linear polarization of the zenith skylight in the spectral region of the O(2)A band, between 755 to 775 nm. It is shown that the degree of linear polarization inside the O(2)A band is particularly sensitive to aerosol altitude. The sensitivity is strongest for aerosols within the troposphere and depends also on their microphysical properties and optical thickness.

View Article and Find Full Text PDF

We analyze the sensitivity of the degree of linear polarization in the Sun's principal plane as a function of aerosol microphysical parameters: the real and imaginary parts of the refractive index, the median radius and geometric standard deviation of the bimodal size distribution (both fine and coarse modes), and the relative number weight of the fine mode at a wavelength of 675 nm. We use Mie theory for single-scattering simulations and the doubling-adding method with the inclusion of polarization for multiple scattering. It is shown that the behavior of the degree of linear polarization is highly sensitive to both the small mode of the bimodal size distribution and the real part of the refractive index of aerosols, as well as to the aerosol optical thickness; whereas not all parameters influence the polarization equally.

View Article and Find Full Text PDF

We compare the Earth reflectances of the spectrometers Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) over their overlapping wavelength range (240-800 nm). The goal is to investigate the quality of the radiometric calibration of SCIAMACHY using calibrated GOME data as a reference. However, severe degradation of the GOME instrument in the UV since 2001 prevents it from being a reliable reference below 500 nm.

View Article and Find Full Text PDF

Four ice-crystal models are tested by use of ice-cloud reflectances derived from Along Track Scanning Radiometer-2 (ATSR-2) and Polarization and Directionality of Earth's Reflectances (POLDER) radiance measurements. The analysis is based on dual-view ATSR-2 total reflectances of tropical cirrus and POLDER global-scale total and polarized reflectances of ice clouds at as many as 14 viewing directions. Adequate simulations of ATSR-2 total reflectances at 0.

View Article and Find Full Text PDF

A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface.

View Article and Find Full Text PDF