Starch is an important energy source for humans. Starch escaping digestion in the small intestine will transit to the colon to be fermented by gut microbes. Many gut microbes express α-amylases that can degrade soluble starch, but only a few are able to degrade intrinsic resistant starch (RS), which is insoluble and highly resistant to digestion (≥80% RS).
View Article and Find Full Text PDFFood ingredients that can activate and improve immunological defense, against e.g., pathogens, have become a major field of research.
View Article and Find Full Text PDFMol Nutr Food Res
August 2021
Scope: Next to galacto-oligosaccharides (GOS), starch-derived isomalto-oligosaccharide preparation (IMO) and isomalto/malto-polysaccharides (IMMP) could potentially be used as prebiotics in infant formulas. However, it remains largely unknown how the specific molecular structures of these non-digestible carbohydrates (NDCs) impact fermentability and immune responses in infants.
Methods And Results: In vitro fermentation of GOS, IMO and IMMP using infant fecal inoculum of 2- and 8-week-old infants shows that only GOS and IMO are fermented by infant fecal microbiota.
Scope: Resistant starches (RSs) are classically considered to elicit health benefits through fermentation. However, it is recently shown that RSs can also support health by direct immune interactions. Therefore, it has been hypothesized that the structural traits of RSs might impact the health benefits associated with their consumption.
View Article and Find Full Text PDFThe distributions of phosphorus and hydroxypropyl groups within granules of cross-linked and hydroxypropylated sweet potato starches were investigated. Chemical surface peeling of starch granules was performed after sieving of native and modified starches into large-size (diameter ≥ 20 μm) and small-size (diameter < 20 μm) fractions. Starch granules were surface gelatinized in a 4M calcium chloride solution at different levels.
View Article and Find Full Text PDFSweet potato starch was cross-linked using sodium trimetaphosphate and hydroxypropylated using propylene oxide. The level and position of phosphorus and hydroxypropyl groups within cross-linked and hydroxypropylated sweet potato starch was investigated by phosphorus and proton nuclear magnetic resonance spectroscopy ((31)P, (1)H NMR). The cross-linking reaction produced monostarch monophosphate and distarch monophosphate in a molar ratio of 1:1.
View Article and Find Full Text PDFSweet potato starch was modified by cross-linking, hydroxypropylation, and combined cross-linking and hydroxypropylation, and the starches were subsequently sieved to obtain differently sized granule fractions. The effects of granule size of native and modified sweet potato starch fractions and all fractions were investigated with respect to their physicochemical properties. The large-size granule fraction (27-30 μm) showed a 16-20% higher chemical phosphorylation and a 4-7% higher hydroxypropylation than the small-size granule fraction (14-16 μm).
View Article and Find Full Text PDF