Publications by authors named "Pierrick Roger"

Introduction: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories.

Objectives: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management.

View Article and Find Full Text PDF

Genes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach.

View Article and Find Full Text PDF

Background: The Investigation/Study/Assay (ISA) Metadata Framework is an established and widely used set of open source community specifications and software tools for enabling discovery, exchange, and publication of metadata from experiments in the life sciences. The original ISA software suite provided a set of user-facing Java tools for creating and manipulating the information structured in ISA-Tab-a now widely used tabular format. To make the ISA framework more accessible to machines and enable programmatic manipulation of experiment metadata, the JSON serialization ISA-JSON was developed.

View Article and Find Full Text PDF

Motivation: Developing a robust and performant data analysis workflow that integrates all necessary components whilst still being able to scale over multiple compute nodes is a challenging task. We introduce a generic method based on the microservice architecture, where software tools are encapsulated as Docker containers that can be connected into scientific workflows and executed using the Kubernetes container orchestrator.

Results: We developed a Virtual Research Environment (VRE) which facilitates rapid integration of new tools and developing scalable and interoperable workflows for performing metabolomics data analysis.

View Article and Find Full Text PDF

Background: Metabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools.

View Article and Find Full Text PDF