Publications by authors named "Pierrick Priault"

Tree growth and survival are dependent on their ability to perceive signals, integrate them, and trigger timely and fitted molecular and growth responses. While ectomycorrhizal symbiosis is a predominant tree-microbe interaction in forest ecosystems, little is known about how and to what extent it helps trees cope with environmental changes. We hypothesized that the presence of Laccaria bicolor influences abiotic cue perception by Populus trichocarpa and the ensuing signaling cascade.

View Article and Find Full Text PDF

In a global context where water will become a scarce resource under temperate latitudes, managing tree plantations with species associations, i.e., forest mixture or agroforestry, could play a major role in optimizing the sustainable use of this resource.

View Article and Find Full Text PDF

Phloem failure has recently been recognized as one of the mechanisms causing tree mortality under drought, though direct evidence is still lacking. We combined 13C pulse-labelling of 8-year-old beech trees (Fagus sylvatica L.) growing outdoors in a nursery with an anatomical study of the phloem tissue in their stems to examine how drought alters carbon transport and phloem transport capacity.

View Article and Find Full Text PDF

CO pulse-labelling experiments were performed in situ on adult beeches (Fagus sylvatica) and pines (Pinus pinaster) at different phenological stages to study seasonal and interspecific short-term dynamics and partitioning of recently assimilated carbon (C) in leaves. Polar fraction (PF, including soluble sugars, amino acids and organic acids) and starch were purified from foliage sampled during a 10-d chase period. C contents, isotopic compositions and C dynamics parameters were determined in bulk foliage, PF and starch.

View Article and Find Full Text PDF

The issues of whether, where, and to what extent carbon isotopic fractionations occur during respiration affect interpretations of plant functions that are important to many disciplines across the natural sciences. Studies of carbon isotopic fractionation during dark respiration in C3 plants have repeatedly shown respired CO2 to be (13)C enriched relative to its bulk leaf sources and (13)C depleted relative to its bulk root sources. Furthermore, two studies showed respired CO2 to become progressively (13)C enriched during leaf ontogeny and (13)C depleted during root ontogeny in C3 legumes.

View Article and Find Full Text PDF

Trees will have to cope with increasing levels of CO(2) and ozone in the atmosphere. The purpose of this work was to assess whether the lignification process could be altered in the wood of poplars under elevated CO(2) and/or ozone. Young poplars were exposed either to charcoal-filtered air (control), to elevated CO(2) (800 μl l(-1)), to ozone (200 nl l(-1)) or to a combination of elevated CO(2) and ozone in controlled chambers.

View Article and Find Full Text PDF

To investigate the role of plant mitochondria in drought tolerance, the response to water deprivation was compared between Nicotiana sylvestris wild type (WT) plants and the CMSII respiratory complex I mutant, which has low-efficient respiration and photosynthesis, high levels of amino acids and pyridine nucleotides, and increased antioxidant capacity. We show that the delayed decrease in relative water content after water withholding in CMSII, as compared to WT leaves, is due to a lower stomatal conductance. The stomatal index and the abscisic acid (ABA) content were unaffected in well-watered mutant leaves, but the ABA/stomatal conductance relation was altered during drought, indicating that specific factors interact with ABA signalling.

View Article and Find Full Text PDF

The study of the fate of assimilated carbon in respiratory fluxes in the field is needed to resolve the residence and transfer times of carbon in the atmosphere-plant-soil system in forest ecosystems, but it requires high frequency measurements of the isotopic composition of evolved CO2. We developed a closed transparent chamber to label the whole crown of a tree and a labelling system capable of delivering a 3-h pulse of 99% 13CO2 in the field. The isotopic compositions of trunk and soil CO2 effluxes were recorded continuously on two labelled and one control trees by a tuneable diode laser absorption spectrometer during a 2-month chase period following the late summer labelling.

View Article and Find Full Text PDF

Recent advances in understanding the metabolic origin and the temporal dynamics in delta(13)C of dark-respired CO(2) (delta(13)C(res)) have led to an increasing awareness of the importance of plant isotopic fractionation in respiratory processes. Pronounced dynamics in delta(13)C(res) have been observed in a number of species and three main hypotheses have been proposed: first, diurnal changes in delta(13)C of respiratory substrates; second, post-photosynthetic discrimination in respiratory pathways; and third, dynamic decarboxylation of enriched carbon pools during the post-illumination respiration period. Since different functional groups exhibit distinct diurnal patterns in delta(13)C(res) (ranging from 0 to 10 per thousand diurnal increase), we explored these hypotheses for different ecotypes and environmental (i.

View Article and Find Full Text PDF

The first broad species survey of diurnal variation in carbon (C) isotope signatures of leaf dark-respired CO(2) (delta(13)C(res)) is presented here and functional differences and diurnal dynamics are linked to fractionation in different respiratory pathways, based on (13)C-labelling experiments. delta(13)C(res) was analysed with a rapid in-tube incubation technique in 16 species. A large diurnal increase in delta(13)C(res) (4-8 per thousand) occurred in evergreen, slow-growing and aromatic species and correlated significantly with cumulative photosynthesis, whereas no variation occurred in herbaceous, fast-growing plants or temperate trees.

View Article and Find Full Text PDF

Nicotiana sylvestris leaves challenged by the bacterial elicitor harpin N(Ea) were used as a model system in which to determine the respective roles of light, oxygen, photosynthesis, and respiration in the programmed cell death response in plants. The appearance of cell death markers, such as membrane damage, nuclear fragmentation, and induction of the stress-responsive element Tnt1, was observed in all conditions. However, the cell death process was delayed in the dark compared with the light, despite a similar accumulation of superoxide and hydrogen peroxide in the chloroplasts.

View Article and Find Full Text PDF