Publications by authors named "Pierre-Yves Jayet"

Background: Induction radiochemotherapy, followed by resection, for T4 non-small cell lung cancer, has shown promising long-term survival but may be associated with increased postoperative morbidity and death, depending on patient selection. Here, we determined the effect of induction radiochemotherapy on pulmonary function and whether postinduction pulmonary function changes predict hospital morbidity and death and long-term survival.

Methods: A consecutive prospective cohort of 72 patients with T4 N0-2 M0 non-small cell lung cancer managed by radiochemotherapy, followed by resection, is reported.

View Article and Find Full Text PDF

Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta.

View Article and Find Full Text PDF

We report successful bilateral lung transplantation for end-stage suppurative lung disease after a previous right-sided pneumonectomy performed for a destroyed lung. Our results demonstrate the feasibility of the procedure even in the context of mechanical ventilation and extracorporeal artificial oxygenation. Posttransplantation follow-up revealed excellent gas exchanges, no airway complications, and well-functioning grafts with right-sided ventilation and perfusion of 37% and 22%, respectively.

View Article and Find Full Text PDF

Background: Adverse events in utero may predispose to cardiovascular disease in adulthood. The underlying mechanisms are unknown. During preeclampsia, vasculotoxic factors are released into the maternal circulation by the diseased placenta.

View Article and Find Full Text PDF

High-altitude pulmonary edema is a life-threatening condition occurring in predisposed but otherwise healthy individuals. It therefore permits the study of underlying mechanisms of pulmonary edema in the absence of confounding factors such as coexisting cardiovascular or pulmonary disease, and/or drug therapy. There is evidence that some degree of asymptomatic alveolar fluid accumulation may represent a normal phenomenon in healthy humans shortly after arrival at high altitude.

View Article and Find Full Text PDF

High altitude constitutes an exciting natural laboratory for medical research. Although initially, the aim of high-altitude research was to understand the adaption of the organism to hypoxia and find treatments for altitude-related diseases, during the past decade or so, the scope of this research has broadened considerably. Two important observations led the foundation for the broadening of the scientific scope of high-altitude research.

View Article and Find Full Text PDF

Today, a growing number of people, some of them suffering from lung diseases, travel to high altitude resorts. It is sometimes not easy for the general practitioner to adequately counsel these patients. Based on our knowledge of physiopathology and clinical studies, the present paper addresses the effects of high altitude in patients with preexisting lung diseases and provides recommendations in order to optimize the sojourn at high altitude.

View Article and Find Full Text PDF

Background: Chronic mountain sickness (CMS) is an important public health problem and is characterized by exaggerated hypoxemia, erythrocytosis, and pulmonary hypertension. While pulmonary hypertension is a leading cause of morbidity and mortality in patients with CMS, it is relatively mild and its underlying mechanisms are not known. We speculated that during mild exercise associated with daily activities, pulmonary hypertension in CMS is much more pronounced.

View Article and Find Full Text PDF

There is evidence that high altitude populations may be better protected from hypoxic pulmonary hypertension than low altitude natives, but the underlying mechanism is incompletely understood. In Tibetans, increased pulmonary respiratory NO synthesis attenuates hypoxic pulmonary hypertension. It has been speculated that this mechanism may represent a generalized high altitude adaptation pattern, but direct evidence for this speculation is lacking.

View Article and Find Full Text PDF

Invasive studies suggest that healthy children living at high altitude display pulmonary hypertension, but the data to support this assumption are sparse. Nitric oxide (NO) synthesized by the respiratory epithelium regulates pulmonary artery pressure, and its synthesis was reported to be increased in Aymara high-altitude dwellers. We hypothesized that pulmonary artery pressure will be lower in Aymara children than in children of European ancestry at high altitude, and that this will be related to increased respiratory NO.

View Article and Find Full Text PDF

Peroxynitrite synthesis is increased in insulin resistant animals and humans. Peroxynitirite-induced nitration of insulin signalling proteins impairs insulin action in vitro, but the role of peroxynitrite in the pathogenesis of insulin resistance in vivo is not known. We therefore assessed the effects of a 1-week treatment with the peroxynitrite decomposition catalyst FeTPPS on insulin sensitivity in insulin resistant high fat diet-fed (HFD) and control mice.

View Article and Find Full Text PDF

Objective: Recent observations indicate that the delivery of nitric oxide by endothelial nitric oxide synthase (eNOS) is not only critical for metabolic homeostasis, but could also be important for mitochondrial biogenesis, a key organelle for free fatty acid (FFA) oxidation and energy production. Because mice deficient for the gene of eNOS (eNOS(-/-)) have increased triglycerides and FFA levels, in addition to hypertension and insulin resistance, we hypothesized that these knockout mice may have decreased energy expenditure and defective beta-oxidation.

Research Design And Methods: Several markers of mitochondrial activity were assessed in C57BL/6J wild-type or eNOS(-/-) mice including the energy expenditure and oxygen consumption by indirect calorimetry, in vitro beta-oxidation in isolated mitochondria from skeletal muscle, and expression of genes involved in fatty acid oxidation.

View Article and Find Full Text PDF

Monocarboxylate transporters (MCTs) are membrane carriers for lactate and ketone bodies. Three isoforms, MCT1, MCT2 and MCT4, have been described in the central nervous system but little information is available about the regulation of their expression in relation to altered metabolic and/or nutritional conditions. We show here that brains of mice fed on a high fat diet (HFD) up to 12 weeks as well as brains of genetically obese (ob/ob) or diabetic (db/db) mice exhibit an increase of MCT1, MCT2 and MCT4 expression as compared to brains of control mice fed a standard diet.

View Article and Find Full Text PDF

High altitude constitutes an exciting natural laboratory for medical research. Over the past decade, it has become clear that the results of high-altitude research may have important implications not only for the understanding of diseases in the millions of people living permanently at high altitude, but also for the treatment of hypoxemia-related disease states in patients living at low altitude. High-altitude pulmonary edema (HAPE) is a life-threatening condition occurring in predisposed, but otherwise healthy subjects, and, therefore, allows to study underlying mechanisms of pulmonary edema in humans, in the absence of confounding factors.

View Article and Find Full Text PDF

Spirometry is the simplest pulmonary function test and recently became available to all physicians by means of economic and performing devices. Spirometry however requires a good knowledge of indications, realization and interpretation. Expert recommendations, regularly updated by the American and European respiratory societies, specify the necessary conditions for spirometry to provide useful information for the care of patients.

View Article and Find Full Text PDF

Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease states in general. Over the past decade, studies involving short-term hypoxic exposure have greatly advanced our knowledge regarding underlying mechanisms and predisposing events of hypoxic pulmonary hypertension. Studies in high altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide (NO) for pulmonary artery pressure homeostasis.

View Article and Find Full Text PDF

Objectives: The aim of this study was to measure the effects of past exposure to environmental tobacco smoke on the day-to-day dynamics of four respiratory-symptom classes in a diary study including adult never-smokers.

Methods: As part of SAPALDIA (Swiss study on air pollution and lung diseases in adults), a prospective multicenter cohort study, 1421 life-time adult nonsmokers were followed for 2 years with the use of daily questionnaires filled out during one to six periods of 4 weeks spread over 2 years (1992-1993). The hazard ratios (HR) of getting or losing respiratory symptoms from one day to another were determined in association with past exposure to environmental tobacco smoke.

View Article and Find Full Text PDF

Background: The distribution of airway responsiveness in a general population of non-smokers without respiratory symptoms has not been established, limiting its use in clinical and epidemiological practice. We derived reference equations depending on individual characteristics (i.e.

View Article and Find Full Text PDF

Obesity/insulin resistance ("diabesity") and the associated long term complications are reaching epidemic proportions worldwide. Recent evidence in experimental animals and humans shows that nitric oxide (NO) plays a key role in glucose and cardiovascular homeostasis. Pharmaceutical drugs releasing small and physiological amounts of NO may represent potential new treatments for insulin resistance.

View Article and Find Full Text PDF

Obesity and insulin resistance are reaching epidemic proportions worldwide. Over the past decade, nitric oxide (NO) has emerged as a key player in the regulation of the metabolic and cardiovascular homeostasis. Here we will review recent data obtained in mice with disruption of the genes encoding for each of the three nitric oxide synthase isoforms.

View Article and Find Full Text PDF

Epidemiological studies demonstrate an association between insulin resistance, hypertension and cardiovascular morbidity. Over the past decade, evidence has accumulated indicating that short-term insulin administration, in addition to its metabolic effects, also has important cardiovascular actions. The sympathetic nervous system and the L-arginine-nitric oxide pathway have emerged as central players in the mediation of insulin's cardiovascular actions.

View Article and Find Full Text PDF