Allosteric regulation of enzymatic activity forms the basis for controlling a plethora of vital cellular processes. While the mechanism underlying regulation of multimeric enzymes is generally well understood and proposed to primarily operate via conformational selection, the mechanism underlying allosteric regulation of monomeric enzymes is poorly understood. Here we monitored for the first time allosteric regulation of enzymatic activity at the single molecule level.
View Article and Find Full Text PDFHandling and mixing ultrasmall volumes of reactants in parallel can increase the throughput and complexity of screening assays while simultaneously reducing reagent consumption. Microfabricated silicon and plastic can provide reliable fluidic devices, but cannot typically handle total volumes smaller than ∼1 × 10(-12) l. Self-assembled soft matter nanocontainers can in principle significantly improve miniaturization and biocompatibility, but exploiting their full potential is a challenge due to their small dimensions.
View Article and Find Full Text PDFBAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature.
View Article and Find Full Text PDFLipids and several specialized proteins are thought to be able to sense the curvature of membranes (MC). Here we used quantitative fluorescence microscopy to measure curvature-selective binding of amphipathic motifs on single liposomes 50-700 nm in diameter. Our results revealed that sensing is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity.
View Article and Find Full Text PDFIn this communication we present a fluorescent based method to measure the encapsulation efficiency in single small unilamellar vesicles. The single small unilamellar vesicles are loaded with a dye in the membrane and a dye in the lumen. They are immobilized on a surface and then imaged with a fluorescent microscope.
View Article and Find Full Text PDFWe present a method that allows the on-demand release and mixing of zepto- to femtoliter volumes of solutions in the interior of vesicular nanoreactors. The reactors comprise a nested system of lipid vesicles, part of which release their cargo in the interior of the others during a thermotropic phase transition. The performance of individual reactors immobilized on glass is characterized using confocal microscopy and a fluorescent dye that reports dilution during the release.
View Article and Find Full Text PDF