Publications by authors named "Pierre-Philippe Lapointe-Garant"

In this study, an in-line Process Analytical Technology (PAT) for cosmetic (non-functional) coating unit operations is developed using images of the tablet bed acquired in real-time by an inexpensive industrial camera and lighting system. The cosmetic end-point of multiple batches, run under different operating conditions, is automatically computed from these images using a Multivariate Image Analysis (MIA) methodology in conjunction with a stability determination strategy. The end-points detected by the algorithm differed, on average, by 3% in terms of total batch time from those identified visually by a trained operator.

View Article and Find Full Text PDF

Among the factors that influence adherence to medication within the pediatric population, taste/irritation has been identified as a critical barrier to patient compliance. With the goal of improving compliance, microspheres (matrix systems within which the drug is dispersed) can be coated with a reverse enteric polymer that will prevent the release of the drug in the oral cavity while maintaining an immediate release once the drug product reaches the stomach, thereby achieving a taste neutral profile. In this work, the in-line performance of three process analytical technology (PAT) tools is evaluated in order to monitor the microsphere coating process.

View Article and Find Full Text PDF

Taste is routinely cited as one of the major contributing factors that negatively influence pediatric patient compliance. A promising solution is coated microsphere systems, which provide doses of active pharmaceutical ingredients (API) subdivided into a plurality of small dosage units. In this work, the microspheres were coated with Kollicoat® Smartseal, a reverse enteric polymer, which acts to minimize or prevent the release of API in the neutral pH of the oral cavity, which results in a masking effect of the unpleasant taste of the API.

View Article and Find Full Text PDF

Process analytical technologies (PAT) enable process insight, process control and real-time testing. Light-induced fluorescence (LIF) spectroscopy is especially well suited for low-concentration ingredients as, in many cases, it is the most sensitive probe of the in-line PAT toolbox. This study is aimed at verifying the applicability of a multivariate LIF analyzer to monitor granulated powder blends in industrial settings.

View Article and Find Full Text PDF