Publications by authors named "Pierre-Olivier Schwartz"

A new novel family of tricyclic sulfur and/or selenium-containing heterotriacenes - with an increasing number of selenium (Se) atoms is presented. The heterotriacene derivatives were synthesized in multistep synthetic routes and the crucial cyclization steps to the stable and soluble fused systems were achieved by copper-catalyzed C-S and C-Se coupling/cyclization reactions. Structures and packing motifs in the solid state were elucidated by single crystal X-ray analysis and XRD powder measurements.

View Article and Find Full Text PDF

Herein we report the synthesis and characterization of new conjugated polymers bearing redox-active pendant groups for applications as cathode active materials in secondary batteries. The polymers comprise a ferrocene moiety immobilized at a poly(cyclopenta[2,1-:3,4-']dithiophene) (pCPDT, P1) or a poly(dithieno[3,2-:2',3'-]pyrrole) (pDTP, P2) backbone an ester or an amide linker. Electrochemical and oxidative chemical polymerizations were performed in order to investigate the redox behaviour of the obtained polymers P1 and P2 and to synthesize materials on gram-scale for battery tests, respectively.

View Article and Find Full Text PDF

Conjugated donor-acceptor block co-oligomers that self-organize into D-A mesomorphic arrays have raised increasing interest due to their potential applications in organic solar cells. We report here a combined experimental and computational study of charge transfer (CT) state formation and recombination in isolated donor-spacer-acceptor oligomers based on bisthiophene-fluorene (D) and perylene diimide (A), which have recently shown to self-organize to give a mesomorphic lamellar structure at room temperature. Using femtosecond transient absorption spectroscopy and Time-Dependent Density Functional Theory in combination with the Marcus-Jortner formalism, the observed increase of the CT lifetimes is rationalized in terms of a reduced electronic coupling between D and A brought about by the chemical design of the donor moiety.

View Article and Find Full Text PDF

Self-assembled donor-acceptor dyads are used as model nanostructured heterojunctions for local investigations by noncontact atomic force microscopy (nc-AFM) and Kelvin probe force microscopy (KPFM). With the aim to probe the photo-induced charge carrier generation, thin films deposited on transparent indium tin oxide substrates are investigated in dark conditions and upon illumination. The topographic and contact potential difference (CPD) images taken under dark conditions are analysed in view of the results of complementary transmission electron microscopy (TEM) experiments.

View Article and Find Full Text PDF

Highly fluorescent non-volatile fluidic fluorene derivatives functionalized with siloxane chains were synthesized and used in monolithic solvent-free liquid organic semiconductor distributed feedback lasers. The photoluminescence quantum yield values, the amplified spontaneous emission thresholds and the ambipolar charge carrier mobilities demonstrate that this class of materials is extremely promising for organic fluidic light-emitting and lasing devices.

View Article and Find Full Text PDF

Perylenediimide-based donor-acceptor co-oligomers are particularly attractive in plastic electronics because of their unique electro-active properties that can be tuned by proper chemical engineering. Herein, a new class of co-oligomers has been synthesized with a dyad structure (AD) or a triad structure (DAD and ADA) in order to understand the correlations between the co-oligomer molecular architecture and the structures formed by self-assembly in thin films. The acceptor block A is a perylene tetracarboxyl diimide (PDI), whereas the donor block D is made of a combination of thiophene, fluorene, and 2,1,3-benzothiadiazole derivatives.

View Article and Find Full Text PDF