Publications by authors named "Pierre-Olivier Mari"

Histone variants are key epigenetic players, but their functional and physiological roles remain poorly understood. Here, we show that depletion of the histone variant H2A.Z in mouse skeletal muscle causes oxidative stress, oxidation of proteins, accumulation of DNA damages, and both neuromuscular junction and mitochondria lesions that consequently lead to premature muscle aging and reduced life span.

View Article and Find Full Text PDF

DNA integrity is incessantly confronted to agents inducing DNA lesions. All organisms are equipped with a network of DNA damage response mechanisms that will repair DNA lesions and restore proper cellular activities. Despite DNA repair mechanisms have been revealed in replicating cells, still little is known about how DNA lesions are repaired in postmitotic cells.

View Article and Find Full Text PDF
Article Synopsis
  • - Spinal muscular atrophy is a genetic neuromuscular disorder linked to mutations in the Survival of Motor Neuron (SMN) protein, essential for maintaining healthy motor neurons.
  • - The nucleolus, a key nuclear structure involved in ribosome production, undergoes structural changes during genotoxic stress, with SMN playing a crucial role in restoring its organization post-DNA repair.
  • - The process involves SMN moving from Cajal bodies to the nucleolus during DNA repair, requiring the cooperation of Coilin and PRMT1 for proper nucleolar function.
View Article and Find Full Text PDF

Xeroderma Pigmentosum group A-binding protein 2 (XAB2) is a multifunctional protein playing a critical role in distinct cellular processes including transcription, splicing, DNA repair, and messenger RNA export. In this study, we demonstrate that XAB2 is involved specifically and exclusively in Transcription-Coupled Nucleotide Excision Repair (TC-NER) reactions and solely for RNA polymerase 2 (RNAP2)-transcribed genes. Surprisingly, contrary to all the other NER proteins studied so far, XAB2 does not accumulate on the local UV-C damage; on the contrary, it becomes more mobile after damage induction.

View Article and Find Full Text PDF

Nucleotide Excision Repair is one of the five DNA repair systems. More than 30 proteins are involved in this process, including the seven XP proteins. When mutated, the genes coding for these proteins are provoking the rare disease Xeroderma Pigmentosum, which causes cutaneous defects and a high prevalence of skin cancers in patients.

View Article and Find Full Text PDF

Background: The basal transcription/repair factor TFIIH is a ten sub-unit complex essential for RNA polymerase II (RNAP2) transcription initiation and DNA repair. In both these processes TFIIH acts as a DNA helix opener, required for promoter escape of RNAP2 in transcription initiation, and to set the stage for strand incision within the nucleotide excision repair (NER) pathway.

Methods: We used a knock-in mouse model that we generated and that endogenously expresses a fluorescent version of XPB (XPB-YFP).

View Article and Find Full Text PDF

DNA lesions block cellular processes such as transcription, inducing apoptosis, tissue failures, and premature aging. To counteract the deleterious effects of DNA damage, cells are equipped with various DNA repair pathways. Transcription-coupled repair specifically removes helix-distorting DNA adducts in a coordinated multistep process.

View Article and Find Full Text PDF
Article Synopsis
  • - The human transcription factor TFIIH is a complex made up of 10 subunits, with the small subunit p8 playing a crucial role in its stability and function in transcription and DNA repair.
  • - p8 can form different structures (homodimeric and heterodimeric) that affect how well TFIIH operates, and its absence diminishes overall transcription activity, suggesting its dimerization could be a target for cancer therapy.
  • - Researchers discovered small-molecule compounds that disrupt p8 dimerization, leading to reduced levels of TFIIH and transcriptional activity, providing a basis for further drug development aimed at regulating transcription in cancer cells.
View Article and Find Full Text PDF

Nucleotide excision repair (NER) guarantees genome integrity against UV light-induced DNA damage. After UV irradiation, cells have to cope with a general transcriptional block. To ensure UV lesions repair specifically on transcribed genes, NER is coupled with transcription in an extremely organized pathway known as transcription-coupled repair.

View Article and Find Full Text PDF

Cockayne syndrome B (CSB), best known for its role in transcription-coupled nucleotide excision repair (TC-NER), contains a ubiquitin-binding domain (UBD), but the functional connection between protein ubiquitylation and this UBD remains unclear. Here, we show that CSB is regulated via site-specific ubiquitylation. Mass spectrometry analysis of CSB identified lysine (K) 991 as a ubiquitylation site.

View Article and Find Full Text PDF

DNA lesions that block transcription may cause cell death even when repaired, if transcription does not restart to reestablish cellular metabolism. However, transcription resumption after individual DNA-lesion repair remains poorly described in mechanistic terms and its players are largely unknown. The general transcription factor II H (TFIIH) is a major actor of both nucleotide excision repair subpathways of which transcription-coupled repair highlights the interplay between DNA repair and transcription.

View Article and Find Full Text PDF

UV-induced DNA damage causes repression of RNA synthesis. Following the removal of DNA lesions, transcription recovery operates through a process that is not understood yet. Here we show that knocking-out of the histone methyltransferase DOT1L in mouse embryonic fibroblasts (MEF(DOT1L)) leads to a UV hypersensitivity coupled to a deficient recovery of transcription initiation after UV irradiation.

View Article and Find Full Text PDF

Trichothiodystrophy group A (TTD-A) patients carry a mutation in the transcription factor II H (TFIIH) subunit TTDA. Using a novel in vivo tripartite split-GFP system, we show that TTDA interacts with the TFIIH subunit p52 and the p52-TTDA-GFP product is incorporated into TFIIH. p52-TTDA-GFP is able to bind DNA and is recruited to UV-damaged DNA.

View Article and Find Full Text PDF

The ten-subunit transcription factor IIH (TFIIH) plays a crucial role in transcription and nucleotide excision repair (NER). Inactivating mutations in the smallest 8-kDa TFB5/TTDA subunit cause the neurodevelopmental progeroid repair syndrome trichothiodystrophy A (TTD-A). Previous studies have shown that TTDA is the only TFIIH subunit that appears not to be essential for NER, transcription, or viability.

View Article and Find Full Text PDF

Schimke immuno-osseous dysplasia (SIOD) is a multisystemic disorder with prominent skeletal, renal, immunological, and ectodermal abnormalities. It is caused by mutations of SMARCAL1 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), which encodes a DNA stress response protein. To determine the relationship of this function to the SIOD phenotype, we profiled the cancer prevalence in SIOD and assessed if defects of nucleotide excision repair (NER) and nonhomologous end joining (NHEJ), respectively, explained the ectodermal and immunological features of SIOD.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is a precisely coordinated process essential to avoid DNA damage-induced cellular malfunction and mutagenesis. Here, we investigate the mechanistic details and effects of the NER machinery when it is compromised by a pathologically significant mutation in a subunit of the repair/transcription factor TFIIH, namely XPD. In contrast to previous studies, we find that no single- or double-strand DNA breaks are produced at early time points after UV irradiation of cells bearing a specific XPD mutation, despite the presence of a clear histone H2AX phosphorylation (γH2AX) signal in the UV-exposed areas.

View Article and Find Full Text PDF

The structure specific flap endonuclease 1 (FEN1) plays an essential role in long-patch base excision repair (BER) and in DNA replication. We have generated a fluorescently tagged FEN1 expressing mouse which allows monitoring the localization and kinetics of FEN1 in response to DNA damage in living cells and tissues. The expression of FEN1, which is tagged at its C-terminal end with enhanced yellow fluorescent protein (FEN1-YFP), is under control of the endogenous Fen1 transcriptional regulatory elements.

View Article and Find Full Text PDF

Transcription-coupled nucleotide excision repair (TC-NER) allows RNA polymerase II (RNAPII)-blocking lesions to be rapidly removed from the transcribed strand of active genes. Defective TCR in humans is associated with Cockayne syndrome (CS), typically caused by defects in either CSA or CSB. Here, we show that CSB contains a ubiquitin-binding domain (UBD).

View Article and Find Full Text PDF

In the last decade, live cell fluorescence microscopy experiments have revolutionized cellular and molecular biology, enabling the localization of proteins within cellular compartments to be analysed and to determine kinetic parameters of enzymatic reactions in living nuclei to be measured. Recently, in vivo DNA labelling by DNA-stains such as DRAQ5, has provided the opportunity to measure kinetic reactions of GFP-fused proteins in targeted areas of the nucleus with different chromatin compaction levels. To verify the suitability of combining DRAQ5-staining with protein dynamic measurements, we have tested the cellular consequences of DRAQ5 DNA intercalation.

View Article and Find Full Text PDF

Studies based on cell-free systems and on in vitro-cultured living cells support the concept that many cellular processes, such as transcription initiation, are highly dynamic: individual proteins stochastically bind to their substrates and disassemble after reaction completion. This dynamic nature allows quick adaptation of transcription to changing conditions. However, it is unknown to what extent this dynamic transcription organization holds for postmitotic cells embedded in mammalian tissue.

View Article and Find Full Text PDF

Radiosensitive T-B- severe combined immunodeficiency (RS-SCID) is caused by defects in the nonhomologous end-joining (NHEJ) DNA repair pathway, which results in failure of functional V(D)J recombination. Here we have identified the first human RS-SCID patient to our knowledge with a DNA-PKcs missense mutation (L3062R). The causative mutation did not affect the kinase activity or DNA end-binding capacity of DNA-PKcs itself; rather, the presence of long P-nucleotide stretches in the immunoglobulin coding joints indicated that it caused insufficient Artemis activation, something that is dependent on Artemis interaction with autophosphorylated DNA-PKcs.

View Article and Find Full Text PDF

Nucleotide excision repair (NER) is the principal pathway for counteracting cytotoxic and mutagenic effects of UV irradiation. To provide insight into the in vivo regulation of the DNA damage recognition step of global genome NER (GG-NER), we constructed cell lines expressing fluorescently tagged damaged DNA binding protein 1 (DDB1). DDB1 is a core subunit of a number of cullin 4-RING ubiquitin ligase complexes.

View Article and Find Full Text PDF

The DNA-dependent protein kinase catalytic subunit (DNA-PK(CS)) plays an important role during the repair of DNA double-strand breaks (DSBs). It is recruited to DNA ends in the early stages of the nonhomologous end-joining (NHEJ) process, which mediates DSB repair. To study DNA-PK(CS) recruitment in vivo, we used a laser system to introduce DSBs in a specified region of the cell nucleus.

View Article and Find Full Text PDF

DNA double-strand break (DSB) repair by nonhomologous end joining (NHEJ) requires the assembly of several proteins on DNA ends. Although biochemical studies have elucidated several aspects of the NHEJ reaction mechanism, much less is known about NHEJ in living cells, mainly because of the inability to visualize NHEJ repair proteins at DNA damage. Here we provide evidence that a pulsed near IR laser can produce DSBs without any visible alterations in the nucleus, and we show that NHEJ proteins accumulate in the irradiated areas.

View Article and Find Full Text PDF

Transcription/repair factor IIH (TFIIH) is essential for RNA polymerase II transcription and nucleotide excision repair (NER). This multi-subunit complex consists of ten polypeptides, including the recently identified small 8-kDa trichothiodystrophy group A (TTDA)/ hTFB5 protein. Patients belonging to the rare neurodevelopmental repair syndrome TTD-A carry inactivating mutations in the TTDA/hTFB5 gene.

View Article and Find Full Text PDF