β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans.
View Article and Find Full Text PDFThe production of influenza vaccines in plants is achieved through transient expression of viral hemagglutinins (HAs), a process mediated by the bacterial vector Agrobacterium tumefaciens. HA proteins are then produced and matured through the secretory pathway of plant cells, before being trafficked to the plasma membrane where they induce formation of virus-like particles (VLPs). Production of VLPs unavoidably impacts plant cells, as do viral suppressors of RNA silencing (VSRs) that are co-expressed to increase recombinant protein yields.
View Article and Find Full Text PDFThe unfolded protein response (UPR) allows cells to cope with endoplasmic reticulum (ER) stress induced by accumulation of misfolded proteins in the ER. Due to its sensitivity to Agrobacterium tumefaciens, the model plant Nicotiana benthamiana is widely employed for transient expression of recombinant proteins of biopharmaceutical interest, including antibodies and virus surface proteins used for vaccine production. As such, study of the plant UPR is of practical significance, since enforced expression of complex secreted proteins often results in ER stress.
View Article and Find Full Text PDFControl over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated β1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing.
View Article and Find Full Text PDFBackground: Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains.
View Article and Find Full Text PDFN-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan (LdOST) for its ability to improve IgG1 Fc glycosylation.
View Article and Find Full Text PDFHuman metapneumovirus (HMPV) and human respiratory virus (HRSV) are two leading causes of acute respiratory tract infection in young children. While there is no licensed drug against HMPV, the monoclonal antibody (mAb) Palivizumab is approved against HRSV for prophylaxis use only. Novel therapeutics against both viruses are therefore needed.
View Article and Find Full Text PDFThe binding of influenza hemagglutinin (HA) to sialic acid (SA) receptors plays a well-defined role in shaping infection but the impact of such binding on vaccine responses has not yet been explored. We generated a virus-like particle (VLP) vaccine bearing the HA of H1N1 A/California/07/09 that is unable to bind to its α(2,6)-linked SA receptor (H1-VLP) and compared its immunogenicity and efficacy to a wild-type H1-VLP (H1-VLP) in mice. The H1-VLP elicited significantly stronger and more durable antibody responses (hemagglutination inhibition and microneutralization titers) and greater avidity maturation, likely attributable to improved germinal center formation.
View Article and Find Full Text PDFPartial neutralization of the Golgi lumen pH by the ectopic expression of influenza virus M2 proton channel is useful to stabilize acid-labile recombinant proteins in plant cells, but the impact of pH gradient mitigation on host cellular functions has not been investigated. Here, we assessed the unintended effects of M2 expression on the leaf proteome of infiltrated with the bacterial gene vector . An isobaric tags for relative and absolute quantification quantitative proteomics procedure was followed to compare the leaf proteomes of plants agroinfiltrated with either an "empty" vector or an M2-encoding vector.
View Article and Find Full Text PDFCellular engineering approaches have been proposed to mitigate unintended proteolysis in plant protein biofactories, involving the design of protease activity-depleted environments by gene silencing or in situ inactivation with accessory protease inhibitors. Here, we assessed the impact of influenza virus M2 proton channel on host protease activities and recombinant protein processing in the cell secretory pathway of Nicotiana benthamiana leaves. Transient co-expression assays with M2 and GFP variant pHluorin were first conducted to illustrate the potential of proton export from the Golgi lumen to promote recombinant protein yield.
View Article and Find Full Text PDFMedicago, Inc. has developed an efficient virus-like particle (VLP) vaccine production platform using the Nicotiana benthamiana expression system, and currently has influenza-based products targeting seasonal/pandemic hemagglutinin (HA) proteins in advanced clinical trials. We wished to generate a trackable HA-based VLP that would allow us to study both particle assembly in plants and VLP interactions within the mammalian immune system.
View Article and Find Full Text PDFBiopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N.
View Article and Find Full Text PDFPlant-based transient expression is potentially the most rapid and cost-efficient system for the production of recombinant pharmaceutical proteins, but safety concerns associated with plant-specific N-glycosylation have hampered its adoption as a commercial production system. In this article, we describe an approach based on the simultaneous transient co-expression of an antibody, a suppressor of silencing and a chimaeric human beta1,4-galactosyltransferase targeted for optimal activity to the early secretory pathway in agroinfiltrated Nicotiana benthamiana leaves. This strategy allows fast and high-yield production of antibodies with human-like N-glycans and, more generally, provides solutions to many critical problems posed by the large-scale production of therapeutic and vaccinal proteins, specifically yield, volume and quality.
View Article and Find Full Text PDFThe improvements in agroinfiltration methods for plant-based transient expression now allow the production of significant amounts of recombinant proteins in a matter of days. While vacuum-based agroinfiltration has been brought to large scale to meet the cost, speed and surge capacity requirements for vaccine and therapeutic production, the more accessible and affordable syringe agroinfiltration procedure still represents a fast and high-yielding approach to recombinant protein production at lab scale. The procedure exemplified here has proven its reproducibility and high-yield capacity for the production of proteins with varying levels of complexity, including monoclonal antibodies.
View Article and Find Full Text PDFA strain-specific vaccine represents the best possible response to the threat of an influenza pandemic. Rapid delivery of such a vaccine to the world's population before the peak of the first infection wave seems to be an unattainable goal with the current influenza vaccine manufacturing capacity. Plant-based transient expression is one of the few production systems that can meet the anticipated surge requirement.
View Article and Find Full Text PDFThe use of multiple copies of vectors based on either full-length or deleted versions of cowpea mosaic virus RNA-2 for the production of heteromeric proteins in plants was investigated. Co-infiltration of two full-length RNA-2 constructs containing different marker genes into Nicotiana benthamiana in the presence of RNA-1 showed that the two foreign proteins were efficiently expressed within the same cell in inoculated tissue. Furthermore, the proteins were co-localized to the same subcellular compartments, an essential prerequisite for heteromer formation.
View Article and Find Full Text PDF