Publications by authors named "Pierre-Mehdi Hammoudi"

Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown.

View Article and Find Full Text PDF

Virulence and persistence of the obligate intracellular parasite Toxoplasma gondii involve the secretion of effector proteins belonging to the family of dense granule proteins (GRAs) that act notably as modulators of the host defense mechanisms and participate in cyst wall formation. The subset of GRAs residing in the parasitophorous vacuole (PV) or exported into the host cell, undergo proteolytic cleavage in the Golgi upon the action of the aspartyl protease 5 (ASP5). In tachyzoites, ASP5 substrates play central roles in the morphology of the PV and the export of effectors across the translocon complex MYR1/2/3.

View Article and Find Full Text PDF

The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate.

View Article and Find Full Text PDF

Toxoplasma gondii infects virtually any nucleated cell and resides inside a non-phagocytic vacuole surrounded by a parasitophorous vacuolar membrane (PVM). Pivotal to the restriction of T. gondii dissemination upon infection in murine cells is the recruitment of immunity regulated GTPases (IRGs) and guanylate binding proteins (GBPs) to the PVM that leads to pathogen elimination.

View Article and Find Full Text PDF

Toxoplasmic encephalitis is an AIDS-defining condition. The decline of IFN-γ-producing CD4 T cells in AIDS is a major contributing factor in reactivation of quiescent Toxoplasma gondii to an actively replicating stage of infection. Hence, it is important to characterize CD4-independent mechanisms that constrain acute T.

View Article and Find Full Text PDF

In rodents, the decrease of felid aversion induced by Toxoplasma gondii, a phenomenon termed fatal attraction, is interpreted as an adaptive manipulation by the neurotropic protozoan parasite. With the aim of understanding how the parasite induces such specific behavioral modifications, we performed a multiparametric analysis of T. gondii-induced changes on host behavior, physiology, and brain transcriptome as well as parasite cyst load and distribution.

View Article and Find Full Text PDF

The protozoan parasite Toxoplasma gondii has co-evolved with its homeothermic hosts (humans included) strategies that drive its quasi-asymptomatic persistence in hosts, hence optimizing the chance of transmission to new hosts. Persistence, which starts with a small subset of parasites that escape host immune killing and colonize the so-called immune privileged tissues where they differentiate into a low replicating stage, is driven by the interleukin 12 (IL-12)-interferon-γ (IFN-γ) axis. Recent characterization of a family of Toxoplasma effectors that are delivered into the host cell, in which they rewire the host cell gene expression, has allowed the identification of regulators of the IL-12-IFN-γ axis, including repressors.

View Article and Find Full Text PDF

Plasmodium falciparum and Toxoplasma gondii are obligate intracellular parasites that belong to the phylum of Apicomplexa and cause major human diseases. Their access to an intracellular lifestyle is reliant on the coordinated release of proteins from the specialized apical organelles called micronemes and rhoptries. A specific phosphatidic acid effector, the acylated pleckstrin homology domain-containing protein (APH) plays a central role in microneme exocytosis and thus is essential for motility, cell entry, and egress.

View Article and Find Full Text PDF

Invasion and egress are two key steps in the lytic cycle of Apicomplexa that are governed by the sequential discharge of proteins from two apical secretory organelles called micronemes and rhoptries. In Toxoplasma gondii, the biogenesis of these specialized organelles depends on the post Golgi trafficking machinery, forming an endosomal-like compartment (ELC) resembling endomembrane systems found in eukaryotes. In this study, we have characterized four phylogenetically related Transporter Facilitator Proteins (TFPs) conserved among the apicomplexans.

View Article and Find Full Text PDF

Typically illustrating the 'manipulation hypothesis', Toxoplasma gondii is widely known to trigger sustainable behavioural changes during chronic infection of intermediate hosts to enhance transmission to its feline definitive hosts, ensuring survival and dissemination. During the chronic stage of infection in rodents, a variety of neurological dysfunctions have been unravelled and correlated with the loss of cat fear, among other phenotypic impacts. However, the underlying neurological alteration(s) driving these behavioural modifications is only partially understood, which makes it difficult to draw more than a correlation between T.

View Article and Find Full Text PDF

Micronemes and rhoptries are specialized secretory organelles that deploy their contents at the apical tip of apicomplexan parasites in a regulated manner. The secretory proteins participate in motility, invasion, and egress and are subjected to proteolytic maturation prior to organellar storage and discharge. Here we establish that aspartyl protease 3 (ASP3) resides in the endosomal-like compartment and is crucially associated to rhoptry discharge during invasion and to host cell plasma membrane lysis during egress.

View Article and Find Full Text PDF

The obligate intracellular parasite Toxoplasma gondii possesses a repertoire of 11 myosins. Three class XIV motors participate in motility, invasion and egress, whereas the class XXII myosin F is implicated in organelle positioning and inheritance of the apicoplast. Here we provide evidence that TgUNC acts as a chaperone dedicated to the folding, assembly and function of all Toxoplasma myosins.

View Article and Find Full Text PDF

Rhoptries are club-shaped, regulated secretory organelles that cluster at the apical pole of apicomplexan parasites. Their discharge is essential for invasion and the establishment of an intracellular lifestyle. Little is known about rhoptry biogenesis and recycling during parasite division.

View Article and Find Full Text PDF

Toxoplasma gondii possesses sets of dense granule proteins (GRAs) that either assemble at, or cross the parasitophorous vacuole membrane (PVM) and exhibit motifs resembling the HT/PEXEL previously identified in a repertoire of exported Plasmodium proteins. Within Plasmodium spp., cleavage of the HT/PEXEL motif by the endoplasmic reticulum-resident protease Plasmepsin V precedes trafficking to and export across the PVM of proteins involved in pathogenicity and host cell remodelling.

View Article and Find Full Text PDF

In Toxoplasma gondii, as in other eukaryotes, a subset of the amino-acyl-tRNA synthetases are arranged into an abundant cytoplasmic multi-aminoacyl-tRNA synthetase (MARS) complex. Through a series of genetic pull-down assays, we have identified the enzymes of this complex as: methionyl-, glutaminyl-, glutamyl-, and tyrosyl-tRNA synthetases, and we show that the N-terminal GST-like domain of a partially disordered hybrid scaffold protein, Tg-p43, is sufficient for assembly of the intact complex. Our gel filtration studies revealed significant heterogeneity in the size and composition of isolated MARS complexes.

View Article and Find Full Text PDF