Aliphatic polycarbonates represent an important class of materials with notable applications in the biomedical field. In this work, low Tg furan-functionalized bio-based aliphatic polycarbonates were cross-linked thanks to the Diels-Alder (DA) reaction with a bis-maleimide as the cross-linking agent. The thermo-reversible DA reaction allowed for the preparation of reversible cross-linked polycarbonate materials with tuneable properties as a function of the pendent furan content that was grafted on the polycarbonate backbone.
View Article and Find Full Text PDFBio-sourced polycarbonate networks have been synthesized from an alkene-functional fatty-acid based polycarbonate precursor. Cross-linked networks were created using the radical thiol-ene coupling reaction. The resulting polycarbonate materials exhibited versatile properties either influenced by the structure of the cross-linker or the cross-linker/olefin unit ratio.
View Article and Find Full Text PDFFatty acids were used as precursors for the synthesis of photosensitive polycarbonate materials. In order to avoid multistep reactions, a simple and straightforward methodology toward the synthesis of photosensitive monomers has been developed. Hence, a fatty acid-based cyclic carbonate bearing an unsaturation was synthesized and subsequently polymerized in a controlled manner ( = 1.
View Article and Find Full Text PDF