Given the potent immunological properties of the skin, epicutaneous immunotherapy (EPIT) emerges as a promising treatment approach for inducing immune tolerance, particularly for food allergies. Targeting the highly immunocompetent, non-vascularized epidermis allows for the application of microgram amounts of allergen while significantly reducing the risk of allergen passage into the bloodstream, thus limiting systemic allergen exposure and distribution. This makes EPIT highly suitable for the treatment of potentially life-threatening allergies such as food allergies.
View Article and Find Full Text PDFCurrent inactivated vaccines against influenza A viruses (IAV) mainly induce immune responses against highly variable epitopes across strains and are mostly delivered parenterally, limiting the development of an effective mucosal immunity. In this study, we evaluated the potential of intranasal formulations incorporating conserved IAV epitopes, namely the long alpha helix (LAH) of the stalk domain of hemagglutinin and three tandem repeats of the ectodomain of the matrix protein 2 (3M2e), as universal mucosal anti-IAV vaccines in mice and chickens. The IAV epitopes were grafted to nanorings, a novel platform technology for mucosal vaccination formed by the nucleoprotein (N) of the respiratory syncytial virus, in fusion or not with the C-terminal end of the P97 protein (P97c), a recently identified Toll-like receptor 5 agonist.
View Article and Find Full Text PDFDespite the substantial health and economic burden caused by RSV-associated illness, no vaccine is available. The sole licensed treatment (palivizumab), composed of a monoclonal neutralizing antibody, blocks the fusion of the virus to the host cell but does not prevent infection. The development of a safe and efficacious RSV vaccine is therefore a priority, but also a considerable challenge, and new innovative strategies are warranted.
View Article and Find Full Text PDFDue to its richness in antigen presenting cells, e.g., dendritic cells (DC), the skin has been identified as a promising route for immunotherapy and vaccination.
View Article and Find Full Text PDFBackground: The prevalence of tree nut allergy has increased worldwide, and cashew has become one of the most common food allergens. More critically, cashew allergy is frequently associated with severe anaphylaxis. Despite the high medical need, no approved treatment is available and strict avoidance and preparedness for prompt treatment of allergic reactions are considered dual standard of care.
View Article and Find Full Text PDFThe skin is an immune organ comprised of a large network of antigen-presenting cells such as dendritic cells, making it an attractive target for the development of new vaccines and immunotherapies. Recently, we developed a new innovative and non-invasive vaccination method without adjuvant based on epicutaneous vaccine patches on which antigen forms a dry deposit. Here we describe in mice a method for potentiating the efficacy of our epicutaneous vaccination approach using a minimally invasive and epidermis-limited skin preparation based on laser-induced micro-perforation.
View Article and Find Full Text PDFXCR1 is selectively expressed on a conventional dendritic cell subset, the cDC1 subset, through phylogenetically distant species. The outcome of antigen-targeting to XCR1 may therefore be similar across species, permitting the translation of results from experimental models to human and veterinary applications. Here we evaluated in pigs the immunogenicity of bivalent protein structures made of XCL1 fused to the external portion of the influenza virus M2 proton pump, which is conserved through strains and a candidate for universal influenza vaccines.
View Article and Find Full Text PDFHighly pathogenic influenza A viruses (IAV) infections represent a serious threat to humans due to their considerable morbidity and mortality capacities. A good understanding of the molecular mechanisms responsible for the acute lung injury observed during this kind of infection is essential to design adapted therapies. In the current study, using an unbiased transcriptomic approach, we compared the host-responses of mice infected with two different subtypes of IAV: H1N1 vs.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the major cause of lower respiratory tract infections in infants and is characterized by pulmonary infiltration of B cells in fatal cases. We analyzed the B cell compartment in human newborns and identified a population of neonatal regulatory B lymphocytes (nBreg cells) that produced interleukin 10 (IL-10) in response to RSV infection. The polyreactive B cell receptor of nBreg cells interacted with RSV protein F and induced upregulation of chemokine receptor CX3CR1.
View Article and Find Full Text PDFTo put a Respiratory Syncytial Virus (RSV) vaccine onto the market, new vaccination strategies combining scientific and technical innovations need to be explored. Such a vaccine would also need to be adapted to the vaccination of young children that are the principal victims of acute RSV infection. In the present project, we describe the development and the preclinical evaluation of an original epicutaneous RSV vaccine that combines two technologies: Viaskin® epicutaneous patches as a delivery platform and RSV N-nanorings (N) as a subunit antigen.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the leading cause of acute respiratory infections in children, yet no vaccine is available. The sole licensed preventive treatment against RSV is composed of a monoclonal neutralizing antibody (palivizumab), which targets a conformational epitope located on the fusion protein (F). Palivizumab reduces the burden of bronchiolitis but does not prevent infection.
View Article and Find Full Text PDFHighly pathogenic avian influenza A H5N1 viruses remain endemic in poultry in several countries and still constitute a pandemic threat. Since the early 20th century, we experienced four influenza A pandemics. H3N2 and H1N1pdm09 viruses that respectively emerged during 1968 and 2009 pandemics are still responsible for seasonal epidemics.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is the most important cause of severe lower-respiratory tract disease in calves and young children, yet no human vaccine nor efficient curative treatments are available. Here we describe a recombinant human RSV reverse genetics system in which the red fluorescent protein (mCherry) or the firefly luciferase (Luc) genes are inserted into the RSV genome. Expression of mCherry and Luc are correlated with infection rate, allowing the monitoring of RSV multiplication in cell culture.
View Article and Find Full Text PDFIn this study, subnucleocapsid nanorings formed by the recombinant nucleoprotein (N) of the respiratory syncytial virus were evaluated as a platform to anchor heterologous antigens. The ectodomain of the influenza virus A matrix protein 2 (M2e) is highly conserved and elicits protective antibodies when it is linked to an immunogenic carrier, making it a promising target to develop universal influenza vaccines. In this context, one or three M2e copies were genetically linked to the C terminus of N to produce N-M2e and N-3M2e chimeric recombinant nanorings.
View Article and Find Full Text PDFThe PB1-F2 protein encoded by influenza A viruses can contribute to virulence, a feature that is dependent of its sequence polymorphism. Whereas PB1-F2 from some H1N1 viruses were shown to exacerbate the inflammatory response within the airways, the contribution of PB1-F2 to highly pathogenic avian influenza virus (HPAIV) virulence in mammals remains poorly described. Using a H5N1 HPAIV strain isolated from duck and its PB1-F2 knocked-out mutant, we characterized the dynamics of PB1-F2-associated host response in a murine model of lethal pneumonia.
View Article and Find Full Text PDF