We present a new workflow for the LC-MS determination of native peptides in plasma at picomolar levels. Collected whole blood was quickly diluted with an ice-cold solution in order to stop protease activity. Diluted plasma samples were extracted by protein denaturation followed by solid-phase-extraction with a polymeric stationary phase that removed most proteins and lipids.
View Article and Find Full Text PDFAt the beginning of 2020, an outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reached pandemic dimensions. Throughout the event, diagnostic tests function as an essential tool for understanding, mitigating, and implement strategies to curb and reduce infections. Here, we present a novel method for the fully automated dried blood spot (DBS) sample handling and extraction for serological testing of human IgG antibodies against SARS-CoV-2 using a commercial enzyme-linked immunosorbent assay (ELISA) testing kit.
View Article and Find Full Text PDFExposure to either natural or simulated hypoxia induces hematological adaptations that may affect the parameters of the Athlete Biological Passport (ABP). The aim of the present study was to examine the effect of a novel, mixed hypoxic dose protocol on the likelihood of producing an atypical ABP finding. Ten well-trained middle-distance runners participated in a "live high, train low and high" (LHTLH) altitude training camp for 14 days.
View Article and Find Full Text PDFThe combination of growth hormone (GH) and recombinant erythropoietin (rEPO) is thought to be used particularly in endurance sports. Our objective was to reproduce a 2-week administration of rEPO microdoses alone or in combination with GH microdoses (three times a week) on healthy and athletic male subjects and to evaluate if GH had any additional effects compared to EPO treatment alone. The effects of the treatments on hematological parameters and VO2max were studied as well as the detection of GH in serum.
View Article and Find Full Text PDFIntroduction: The percentage of circulating reticulocytes (RET%) is a useful marker of blood doping in the context of the Athlete Biological Passport (ABP). The viability of the ABP depends on the comparability of sample data obtained across multiple laboratories for a given athlete. With the recent introduction of a different technology for the measurement of reticulocytes, the goal of this study was to compare currently employed Sysmex XT/XE analyzers to the recently introduced Sysmex XN analyzer.
View Article and Find Full Text PDFToday’s high-resolution mass spectrometers (HRMS) allow bioanalysts to perform untargeted/global determinations that can reveal unexpected compounds or concentrations in a patient’s sample. This could be performed for preliminary diagnosis attempts when usual diagnostic processes and targeted determinations fail. We have evaluated an untargeted diagnostic screening (UDS) procedure.
View Article and Find Full Text PDFBackground: Recombinant human erythropoietin (rHuEpo) can improve human performance and is therefore frequently abused by athletes. As a result, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) as an indirect method to detect blood doping. Despite this progress, challenges remain to detect blood manipulations such as the use of microdoses of rHuEpo.
View Article and Find Full Text PDFFor decades, drug testing has been the main instrument at the disposal of anti-doping authorities. The availability in the 1980s of substances identical to those produced by the human body, including the "big 3" (erythropoietin, testosterone, and growth hormone), necessitated a new paradigm in anti-doping. The athlete biological passport (ABP) is a new paradigm, complementary to traditional drug testing, based on the personalized monitoring of doping biomarkers.
View Article and Find Full Text PDFThe haematological module of the Athlete's Biological Passport (ABP) has significantly impacted the prevalence of blood manipulations in elite sports. However, the ABP relies on a number of concentration-based markers of erythropoiesis, such as haemoglobin concentration ([Hb]), which are influenced by shifts in plasma volume (PV). Fluctuations in PV contribute to the majority of biological variance associated with volumetric ABP markers.
View Article and Find Full Text PDFPlasma volume and red cell mass are key health markers used to monitor numerous disease states, such as heart failure, kidney disease, or sepsis. Nevertheless, there is currently no practically applicable method to easily measure absolute plasma or red cell volumes in a clinical setting. Here, a novel marker for plasma volume and red cell mass was developed through analysis of the observed variability caused by plasma volume shifts in common biochemical measures, selected based on their propensity to present with low variations over time.
View Article and Find Full Text PDFDue to their performance enhancing properties, use of anabolic steroids (e.g. testosterone, nandrolone, etc.
View Article and Find Full Text PDFA major concern with the identification of renal toxicity using the traditional biomarkers, urea and creatinine, is that toxicity signal definitions are not sensitive to medically important changes in these biomarkers. Traditional renal signal definitions for urea and creatinine have not adequately identified drugs that have generated important medical issues later in development. Here, two clinical trial databases with a posteriori known drug induced renal impairment were analyzed for the presence of a renal impairment biomarker signal from urea (590 patients; age 26-92, median 65) and creatinine (532 patients; age 26-97, median 65).
View Article and Find Full Text PDFBackground: A concern with using creatinine for the identification of drug-induced renal impairment is that small changes in serum creatinine (SCr) that frequently are perceived as measurement bias or imprecision translate into important changes in the glomerular filtration rate. Important drug-generated changes in creatinine are difficult to detect because they are frequently observed within the reference interval. The design of a crossover drug protocol is an opportunity to use study participants as their own control to identify these small but important changes.
View Article and Find Full Text PDFTechnical advances are being made in many areas of biotechnology and genetics that are facilitating the detection of doping in sport. These improvements have been catalyzed by the need to counter the ever-increasing sophistication of the community of athletes and their retinues who are intent on the illicit use of physical, pharmacological and genetic tools and methods to enhance athletic performance, in contravention of established international ethical and legal standards and of international treaty. The methods described in this article present a partial and general picture of only some of these advances.
View Article and Find Full Text PDFDuring the last four decades, the main instrument at the disposal of anti-doping authorities has been the detection of prohibited substances in biological samples collected from athletes. However, the availability of substances identical to those produced by the human body, such as EPO, testosterone and GH, necessitated a new drug-testing paradigm. From the early 2000's, the Athlete Biological Passport (ABP) was proposed as an alternative means to drug testing.
View Article and Find Full Text PDFAlthough hemoglobin concentration measurement is among the most commonly performed blood tests, the description of global population parameters, heterogeneous factors, and within-subject variations in patients with disease remains incomplete. As absolute action values are being published in the medical literature and by government healthcare agencies, these measures are important to define patient-specific ranges of biomarkers. Here, a global clinical trial data set composed of 1,537,932 hemoglobin values from 416,374 patients and 372 clinical indications was generated over 2 years by automated analyzers in a global network of 5 laboratories.
View Article and Find Full Text PDFPurpose: The most promising attempt to reveal otherwise undetectable autologous blood doping is the Athlete Biological Passport enabling a longitudinal monitoring of hematological measures. Recently, the determination of hemoglobin mass (tHb) was suggested to be incorporated in the adaptive model of the Athlete Biological Passport. The purpose therefore was to evaluate the performance of tHb as part of the adaptive model for the detection of autologous blood transfusions in a longitudinal blinded study.
View Article and Find Full Text PDFBackground: Urine is still the matrix of choice to fight against doping, because it can be collected non-invasively during anti-doping tests. Most of the World Anti-Doping Agency's accredited laboratories have more than 20 years experience in analyzing this biological fluid and the majority of the compounds listed in the 2010 Prohibited List-International Standard are eliminated through the urinary apparatus. Storing and transporting urine samples for doping analyses does not include a specific protocol to prevent microbial and thermal degradation.
View Article and Find Full Text PDFBackground: In elite sports, the growing availability of doping substances identical to those naturally produced by the human body seriously limits the ability of drug-testing regimes to ensure fairness and protection of health.
Content: The Athlete Biological Passport (ABP), the new paradigm in testing based on the personalized monitoring of biomarkers of doping, offers the enormous advantage of being independent of this endless pharmaceutical race. Doping triggers physiological changes that provide physiological enhancements.
Context: Until now, the testosterone/epitestosterone (T/E) ratio is the main marker for the detection of testosterone (T) misuse in athletes. As this marker can be influenced by a number of confounding factors, additional steroid profile parameters indicating T misuse can provide substantiating evidence of doping with endogenous steroids. The evaluation of a steroid profile is currently based upon population statistics.
View Article and Find Full Text PDFBackground: No reliable estimate of the prevalence of doping in elite sports has been published. Since 2001, the international governing body for athletics has implemented a blood-testing program to detect altered hematological profiles in the world's top-level athletes.
Methods: A total of 7289 blood samples were collected from 2737 athletes out of and during international athletic competitions.