Publications by authors named "Pierre-Andre Trinel"

A family of nine genes encoding proteins involved in the synthesis of β-1,2 mannose adhesins of Candida albicans has been identified. Four of these genes, BMT1-4, encode enzymes acting stepwise to add β-mannoses on to cell-wall phosphopeptidomannan (PPM). None of these acts on phospholipomannan (PLM), a glycosphingolipid member of the mannose-inositol-phosphoceramide family, which contributes with PPM to β-mannose surface expression.

View Article and Find Full Text PDF

Structural studies of cell wall components of the pathogenic yeast Candida albicans have demonstrated the presence of beta-1,2-linked oligomannosides in phosphopeptidomannan and phospholipomannan. During C. albicans infection, beta-1,2-oligomannosides play an important role in host/pathogen interactions by acting as adhesins and by interfering with the host immune response.

View Article and Find Full Text PDF

Stimulation of cells of the macrophage lineage is a crucial step in the sensing of yeasts by the immune system. Glycans present in both Candida albicans and Saccharomyces cerevisiae cell walls have been shown to act as ligands for different receptors leading to different stimulating pathways, some of which need receptor co-involvement. However, among these ligand-receptor couples, none has been shown to discriminate the pathogenic yeast C.

View Article and Find Full Text PDF

Candida albicans strains consist of serotypes A and B depending on the presence of terminal beta-1,2-linked mannose residues in the acid-stable part of serotype A phosphopeptidomannan (PPM). The distribution of C. albicans serotypes varies according to country and human host genetic and infectious backgrounds.

View Article and Find Full Text PDF

Studies on Candida albicans phospholipomannan have suggested a novel biosynthetic pathway for yeast glycosphingolipids. This pathway is thought to diverge from the usual pathway at the mannose-inositol-phospho-ceramide (MIPC) step. To confirm this hypothesis, a C.

View Article and Find Full Text PDF

C-mannosylation of Trp residue is one of the most recently discovered types of glycosylation, but the identification of these mannosylated residues in proteins is rather tedious. In a previous paper, it was reported that the complete analysis of all constituents of glycoproteins (sialic acids, monosaccharides, and amino acids) could be determined on the same sample in three different steps of gas chromatography/mass spectrometry of heptafluorobutyrate derivatives. It was observed that during the acid-catalyzed methanolysis step used for liberation of monosaccharide from classical O- and N-glycans, Trp and His were quantitatively transformed by the addition of a methanol molecule on their indole and imidazole groups, respectively.

View Article and Find Full Text PDF

Candida albicans, the most common opportunistic fungal pathogen of humans is a part of the normal microbial flora. To investigate host-parasite interaction related to the commensal-pathogen switch of this yeast we compared the response of macrophages to C. albicans and to the non-pathogenic yeast Saccharomyces cerevisiae.

View Article and Find Full Text PDF

Candida albicans is a commensal dimorphic yeast of the digestive tract that causes hematogenously disseminated infections in immunocompromised individuals. Endogenous invasive candidiasis develops from C. albicans adhering to the intestinal epithelium.

View Article and Find Full Text PDF

Candida albicans is a common, harmless yeast in the human digestive tract that also causes severe systemic fungal infection in hospitalized patients. Its cell-wall surface displays a unique glycolipid called phospholipomannan (PLM). The ability of PLM to stimulate tumor necrosis factor (TNF)-alpha production by J774 mouse cells correlates with the activation of nuclear factor (NF)-kappaB.

View Article and Find Full Text PDF

The surface of the pathogenic yeast Candida albicans is coated with phospholipomannan (PLM), a phylogenetically unique glycolipid composed of beta-1,2-oligomannosides and phytoceramide. This study compared the specific contribution of PLM to the modulation of signaling pathways linked to the survival of C. albicans in macrophages in contrast to Saccharomyces cerevisiae.

View Article and Find Full Text PDF

The pathogenic yeast Candida albicans has the ability to synthesize unique sequences of beta-1,2-oligomannosides that act as adhesins, induce cytokine production, and generate protective antibodies. Depending on the growth conditions, beta-1,2-oligomannosides are associated with different carrier molecules in the cell wall. Structural evidence has been obtained for the presence of these residues in the polysaccharide moiety of the glycolipid, phospholipomannan (PLM).

View Article and Find Full Text PDF