Publications by authors named "Pierre-Andre Noel"

The mechanisms underlying cascading failures are often modeled via the paradigm of self-organized criticality. Here we introduce a simple network model where nodes self-organize to be either weakly or strongly protected against failure in a manner that captures the trade-off between degradation and reinforcement of nodes inherent in many network systems. If strong nodes cannot fail, any failure is contained to a single, isolated cluster of weak nodes and the model produces power-law distributions of failure sizes.

View Article and Find Full Text PDF
Article Synopsis
  • Some political campaigns involve different strategies: some want to have discussions, while others only talk to people who agree with them.
  • The way these campaigns are set up can change how they compete against each other, especially when they adapt to their opponents.
  • In complicated situations with three or more competitors, weird results can happen, showing that sometimes a competitor’s extreme actions can change the outcome, even if those actions seem unlikely to win.
View Article and Find Full Text PDF

Multiplex networks (a system of multiple networks that have different types of links but share a common set of nodes) arise naturally in a wide spectrum of fields. Theoretical studies show that in such multiplex networks, correlated edge dynamics between the layers can have a profound effect on dynamical processes. However, how to extract the correlations from real-world systems is an outstanding challenge.

View Article and Find Full Text PDF

The Bak-Tang-Wiesenfeld (BTW) sandpile process is an archetypal, stylized model of complex systems with a critical point as an attractor of their dynamics. This phenomenon, called self-organized criticality, appears to occur ubiquitously in both nature and technology. Initially introduced on the two-dimensional lattice, the BTW process has been studied on network structures with great analytical successes in the estimation of macroscopic quantities, such as the exponents of asymptotically power-law distributions.

View Article and Find Full Text PDF

Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics.

View Article and Find Full Text PDF

The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system.

View Article and Find Full Text PDF

Controlling self-organizing systems is challenging because the system responds to the controller. Here, we develop a model that captures the essential self-organizing mechanisms of Bak-Tang-Wiesenfeld (BTW) sandpiles on networks, a self-organized critical (SOC) system. This model enables studying a simple control scheme that determines the frequency of cascades and that shapes systemic risk.

View Article and Find Full Text PDF

By generating the specifics of a network structure only when needed (on-the-fly), we derive a simple stochastic process that exactly models the time evolution of susceptible-infectious dynamics on finite-size networks. The small number of dynamical variables of this birth-death Markov process greatly simplifies analytical calculations. We show how a dual analytical description, treating large scale epidemics with a Gaussian approximation and small outbreaks with a branching process, provides an accurate approximation of the distribution even for rather small networks.

View Article and Find Full Text PDF

Many complex systems have been shown to share universal properties of organization, such as scale independence, modularity, and self-similarity. We borrow tools from statistical physics in order to study structural preferential attachment (SPA), a recently proposed growth principle for the emergence of the aforementioned properties. We study the corresponding stochastic process in terms of its time evolution, its asymptotic behavior, and the scaling properties of its statistical steady state.

View Article and Find Full Text PDF

We introduce a mechanism which models the emergence of the universal properties of complex networks, such as scale independence, modularity and self-similarity, and unifies them under a scale-free organization beyond the link. This brings a new perspective on network organization where communities, instead of links, are the fundamental building blocks of complex systems. We show how our simple model can reproduce social and information networks by predicting their community structure and more importantly, how their nodes or communities are interconnected, often in a self-similar manner.

View Article and Find Full Text PDF

Epidemics seldom occur as isolated phenomena. Typically, two or more viral agents spread within the same host population and may interact dynamically with each other. We present a general model where two viral agents interact via an immunity mechanism as they propagate simultaneously on two networks connecting the same set of nodes.

View Article and Find Full Text PDF

Adaptive networks have been recently introduced in the context of disease propagation on complex networks. They account for the mutual interaction between the network topology and the states of the nodes. Until now, existing models have been analyzed using low complexity analytical formalisms, revealing nevertheless some novel dynamical features.

View Article and Find Full Text PDF

Analytical description of propagation phenomena on random networks has flourished in recent years, yet more complex systems have mainly been studied through numerical means. In this paper, a mean-field description is used to coherently couple the dynamics of the network elements (such as nodes, vertices, individuals, etc.) on the one hand and their recurrent topological patterns (such as subgraphs, groups, etc.

View Article and Find Full Text PDF

Considerable attention has been paid, in recent years, to the use of networks in modeling complex real-world systems. Among the many dynamical processes involving networks, propagation processes-in which the final state can be obtained by studying the underlying network percolation properties-have raised formidable interest. In this paper, we present a bond percolation model of multitype networks with an arbitrary joint degree distribution that allows heterogeneity in the edge occupation probability.

View Article and Find Full Text PDF

Mathematical models of infectious diseases, which are in principle analytically tractable, use two general approaches. The first approach, generally known as compartmental modeling, addresses the time evolution of disease propagation at the expense of simplifying the pattern of transmission. The second approach uses network theory to incorporate detailed information pertaining to the underlying contact structure among individuals while disregarding the progression of time during outbreaks.

View Article and Find Full Text PDF

Background: There is strong evidence that human papillomavirus (HPV) is necessary for the development of cervical cancer. A prophylactic HPV vaccine with high reported efficacy was approved in North America in 2006.

Methods: A mathematical model of HPV transmission dynamics was used to simulate different scenarios of natural disease outcomes and intervention strategies.

View Article and Find Full Text PDF