Many behaviors require choosing between conflicting options competing against each other in visuomotor areas. Such choices can benefit from top-down control processes engaging frontal areas in advance of conflict when it is anticipated. Yet, very little is known about how this proactive control system shapes the visuomotor competition.
View Article and Find Full Text PDFUsing instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task.
View Article and Find Full Text PDFNeuroimaging and neuropsychological studies suggest that in right-handed individuals, the left hemisphere plays a dominant role in praxis, relative to the right hemisphere. However hemispheric asymmetries assessed with transcranial magnetic stimulation (TMS) has not shown consistent differences in corticospinal (CS) excitability of the two hemispheres during movements. In the current study, we systematically explored hemispheric asymmetries in inhibitory processes that are manifest during movement preparation and initiation.
View Article and Find Full Text PDFBackground: During motor decision making, the neural activity in primary motor cortex (M1) encodes dynamically the competition occurring between potential action plans. A common view is that M1 represents the unfolding of the outcome of a decision process taking place upstream. Yet, M1 could also be directly involved in the decision process.
View Article and Find Full Text PDFPrevious studies have identified two inhibitory mechanisms that operate during action selection and preparation. One mechanism, competition resolution, is manifest in the inhibition of the nonselected response and attributed to competition between candidate actions. The second mechanism, impulse control, is manifest in the inhibition of the selected response and is presumably invoked to prevent premature response.
View Article and Find Full Text PDFTop-down control is critical to select goal-directed actions in changeable environments, particularly when several options compete for selection. This control system is thought to involve a mechanism that suppresses activation of unwanted response representations. We tested this hypothesis, in humans, by measuring motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in a left finger muscle during motor preparation in an adapted Eriksen flanker task.
View Article and Find Full Text PDFCurrent models of decision making postulate that action selection entails a competition within motor-related areas. According to this view, during action selection, motor activity should integrate cognitive information (e.g.
View Article and Find Full Text PDF