Publications by authors named "Pierre-Alain Maron"

Microbiological datasets and associated environmental parameters from the French soil quality monitoring network (RMQS) offer an opportunity for long-term and large-scale soil quality monitoring. Soils supply important ecosystem services e.g.

View Article and Find Full Text PDF

Aware of the degradation of their environment, cities engage in a transition towards sustainable development models. They are based on the search for solutions promoting the "return of nature to the city", which is acclaimed by citizen wishing to improve their living environment. As a support of this nature, there is a knowledge issue regard soil to define management practices and design methods to optimize its functioning.

View Article and Find Full Text PDF

Soils are one of the major reservoirs of biological diversity on our planet because they host a huge richness of microorganisms. The fungal:bacterial (F:B) ratio targets two major functional groups of organisms in soils and can improve our understanding of their importance and efficiency for soil functioning. To better decipher the variability of this ratio and rank the environmental parameters involved, we used the French Soil Quality Monitoring Network (RMQS)-one of the most extensive and a priori-free soil sampling surveys, based on a systematic 16 km × 16 km grid and including more than 2,100 samples.

View Article and Find Full Text PDF

Soil microbial biodiversity provides many useful services in cities. However, the ecology of microbial communities in urban soils remains poorly documented, and studies are required to better predict the impact of urban land use. We characterized microbial communities (archea/bacteria and fungi) in urban soils in Dijon (Burgundy, France).

View Article and Find Full Text PDF

Soils are fundamental resources for agricultural production and play an essential role in food security. They represent the keystone of the food value chain because they harbor a large fraction of biodiversity-the backbone of the regulation of ecosystem services and "soil health" maintenance. In the face of the numerous causes of soil degradation such as unsustainable soil management practices, pollution, waste disposal, or the increasing number of extreme weather events, it has become clear that (i) preserving the soil biodiversity is key to food security, and (ii) biodiversity-based solutions for environmental monitoring have to be developed.

View Article and Find Full Text PDF

Deciphering microbiota functions is crucial to predict ecosystem sustainability in response to global change. High-throughput sequencing at the individual or community level has revolutionized our understanding of microbial ecology, leading to the big data era and improving our ability to link microbial diversity with microbial functions. Recent advances in bioinformatics have been key for developing functional prediction tools based on DNA metabarcoding data and using taxonomic gene information.

View Article and Find Full Text PDF

Background: The ability to compare samples or studies easily using metabarcoding so as to better interpret microbial ecology results is an upcoming challenge. A growing number of metabarcoding pipelines are available, each with its own benefits and limitations. However, very few have been developed to offer the opportunity to characterize various microbial communities (e.

View Article and Find Full Text PDF

Microorganisms in soil are known to be a source and a sink of volatile organic compounds (VOCs). The role of the microbial VOCs on soil ecosystem regulation has been increasingly demonstrated in the recent years. Nevertheless, little is known about the influence of the microbial soil community structure and diversity on VOC emissions.

View Article and Find Full Text PDF

Studying the ecology of photosynthetic microeukaryotes and prokaryotic cyanobacterial communities requires molecular tools to complement morphological observations. These tools rely on specific genetic markers and require the development of specialised databases to achieve taxonomic assignment. We set up a reference database, called µgreen-db, for the 23S rRNA gene.

View Article and Find Full Text PDF

The cultivation of legumes shows promise for the development of sustainable agriculture, but yield instability remains one of the main obstacles for its adoption. Here, we tested whether the yield stability (i.e.

View Article and Find Full Text PDF

Over the last two decades, a considerable effort has been made to decipher the biogeography of soil microbial communities as a whole, from small to broad scales. In contrast, few studies have focused on the taxonomic groups constituting these communities; thus, our knowledge of their ecological attributes and the drivers determining their composition and distribution is limited. We applied a pyrosequencing approach targeting 16 ribosomal RNA (rRNA) genes in soil DNA to a set of 2173 soil samples from France to reach a comprehensive understanding of the spatial distribution of bacteria and archaea and to identify the ecological processes and environmental drivers involved.

View Article and Find Full Text PDF

Volatile Organic Compounds (VOCs) are reactive compounds essential to atmospheric chemistry. They are mainly emitted by living organisms, and mostly by plants. Soil microbes also contribute to emissions of VOCs.

View Article and Find Full Text PDF

Soil microorganisms are essential to agroecosystem functioning and services. Yet, we still lack information on which farming practices can effectively shape the soil microbial communities. The aim of this study was to identify the farming practices, which are most effective at positively or negatively modifying bacterial and fungal diversity while considering the soil environmental variation at a landscape scale.

View Article and Find Full Text PDF

In recent decades, show caves have begun to suffer from microorganism proliferation due to artificial lighting installations for touristic activity. In addition to the aesthetic problem, light encourages microorganisms that are responsible for physical and chemical degradation of limestone walls, speleothems and prehistoric paintings of cultural value. Microorganisms have previously been described by microscopy or culture-dependent methods, but data provided by new generation sequencing are rare.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how changes in microbial diversity impact carbon cycling in soil, particularly in relation to different types of carbon sources like plant residues and organic matter.
  • Results indicate that reduced microbial diversity can significantly lower CO2 emissions and shift decomposition patterns towards more easily degradable carbon sources, with effects being stronger in nutrient-rich conditions.
  • These findings highlight the importance of preserving microbial diversity, especially in the context of global change, as it plays a crucial role in organic matter decomposition and overall soil health.
View Article and Find Full Text PDF

The stable oxygen isotope composition of atmospheric CO and the mixing ratio of carbonyl sulphide (OCS) are potential tracers of biospheric CO fluxes at large scales. However, the use of these tracers hinges on our ability to understand and better predict the activity of the enzyme carbonic anhydrase (CA) in different soil microbial groups, including phototrophs. Because different classes of the CA family (α, β and γ) may have different affinities to CO and OCS and their expression should also vary between different microbial groups, differences in the community structure could impact the 'community-integrated' CA activity differently for CO and OCS.

View Article and Find Full Text PDF

Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how different climatic factors influence two mechanisms of the priming effect in soil: 'stoichiometric decomposition' and 'nutrient mining.'
  • The research was conducted in Madagascar, analyzing soil samples for their microbial and physicochemical properties along temperature and rainfall gradients.
  • Results indicate that cooler climates enhance stoichiometric decomposition, while warmer climates boost nutrient mining, suggesting climate change could significantly affect soil carbon dynamics.
View Article and Find Full Text PDF

Industrial agriculture is yearly responsible for the loss of 55-100 Pg of historical soil carbon and 9.9 Tg of reactive nitrogen worldwide. Therefore, management practices should be adapted to preserve ecological processes and reduce inputs and environmental impacts.

View Article and Find Full Text PDF

Mathematical models do not explicitly represent the influence of soil microbial diversity on soil organic carbon (SOC) dynamics despite recent evidence of relationships between them. The objective of the present study was to statistically investigate relationships between bacterial and fungal diversity indexes (richness, evenness, Shannon index, inverse Simpson index) and decomposition of different pools of soil organic carbon by measuring dynamics of CO2 emissions under controlled conditions. To this end, 20 soils from two different land uses (cropland and grassland) were incubated with or without incorporation of 13C-labelled wheat-straw residue.

View Article and Find Full Text PDF

The infrastructure for Analysis and Experimentation on Ecosystems (AnaEE-France) is an integrated network of the major French experimental, analytical, and modeling platforms dedicated to the biological study of continental ecosystems (aquatic and terrestrial). This infrastructure aims at understanding and predicting ecosystem dynamics under global change. AnaEE-France comprises complementary nodes offering access to the best experimental facilities and associated biological resources and data: Ecotrons, seminatural experimental platforms to manipulate terrestrial and aquatic ecosystems, in natura sites equipped for large-scale and long-term experiments.

View Article and Find Full Text PDF

Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs.

View Article and Find Full Text PDF