Data-driven research led by computational systems biology methods, encompassing bioinformatics of multiomics datasets and mathematical modeling, are critical for discovery. Herein, we describe a multiomics (metabolomics-fluxomics) approach as applied to heart function in diabetes. The methodology presented has general applicability and enables the quantification of the fluxome or set of metabolic fluxes from cytoplasmic and mitochondrial compartments in central catabolic pathways of glucose and fatty acids.
View Article and Find Full Text PDFAn innovative data-driven model-order reduction technique is proposed to model dilute micrometric or nanometric suspensions of microcapsules, i.e., microdrops protected in a thin hyperelastic membrane, which are used in Healthcare as innovative drug vehicles.
View Article and Find Full Text PDFFlax ( L.) oil is an important source of α-linolenic (C18:3 ω-3). This polyunsaturated fatty acid is well known for its nutritional role in human and animal diets.
View Article and Find Full Text PDFThis article proposes a feeding strategy based on a kinetic model to enhance hairy roots growth. A new approach for modeling hairy root growth is used, considering that there is no nutrient limitation thanks to an appropriate feeding, and the intracellular pools are supposed to be always saturated. Thus, the model describes the specific growth rate from extracellular concentration of the major nutrients and nutrient uptakes depend on biomass growth.
View Article and Find Full Text PDFThis work proposes a new methodology to identify the best medium concentrations for fed-batch production of hairy root using Datura innoxia as a model. Firstly, the role of each component on the growth rate is investigated separately. Then, an experimental design allows refining the optimization studying the interactions between the major species.
View Article and Find Full Text PDF