Publications by authors named "Pierre Tocquin"

Transcriptional regulation is key in bacteria for providing an adequate response in time and space to changing environmental conditions. However, despite decades of research, the binding sites and therefore the target genes and the function of most transcription factors (TFs) remain unknown. Filling this gap in knowledge through conventional methods represents a colossal task which we demonstrate here can be significantly facilitated by a widespread feature in transcriptional control: the autoregulation of TFs implying that the yet unknown transcription factor binding site (TFBS) is neighboring the TF itself.

View Article and Find Full Text PDF

Mechanisms regulating oligodendrocyte differentiation, developmental myelination and myelin maintenance in adulthood are complex and still not completely described. Their understanding is crucial for the development of new protective or therapeutic strategies in demyelinating pathologies such as multiple sclerosis. In this perspective, we have investigated the role of Cyclin-dependent kinase 7 (Cdk7), a kinase involved in cell-cycle progression and transcription regulation, in the oligodendroglial lineage.

View Article and Find Full Text PDF

Background: The increasing demand for local food production is fueling high interest in the development of controlled environment agriculture. In particular, LED technology brings energy-saving advantages together with the possibility of manipulating plant phenotypes through light quality control. However, optimizing light quality is required for each cultivated plant and specific purpose.

View Article and Find Full Text PDF

Summary: To support small and large-scale genome mining projects, we present Post-processing Analysis tooLbox for ANTIsmash Reports (Palantir), a dedicated software suite for handling and refining secondary metabolite biosynthetic gene cluster (BGC) data annotated with the popular antiSMASH pipeline. Palantir provides new functionalities building on NRPS/PKS predictions from antiSMASH, such as improved BGC annotation, module delineation and easy access to sub-sequences at different levels (cluster, gene, module and domain). Moreover, it can parse user-provided antiSMASH reports and reformat them for direct use or storage in a relational database.

View Article and Find Full Text PDF

Common scab disease on root and tuber plants is caused by Streptomyces scabies and related species which use the cellulose synthase inhibitor thaxtomin A as the main phytotoxin. Thaxtomin production is primarily triggered by the import of cello-oligosaccharides. Once inside the cell, the fate of the cello-oligosaccharides is dichotomized: (i) the fuelling of glycolysis with glucose for the saprophytic lifestyle through the action of β-glucosidase(s) (BGs); and (ii) elicitation of the pathogenic lifestyle by the inhibition of CebR-mediated transcriptional repression of thaxtomin biosynthetic genes.

View Article and Find Full Text PDF

Root system analysis is a complex task, often performed with fully automated image analysis pipelines. However, the outcome is rarely verified by ground-truth data, which might lead to underestimated biases. We have used a root model, ArchiSimple, to create a large and diverse library of ground-truth root system images (10,000).

View Article and Find Full Text PDF

Molecular data concerning the involvement of roots in the genetic pathways regulating floral transition are lacking. In this study, we performed global analyses of the root transcriptome in Arabidopsis in order to identify flowering time genes that are expressed in the roots and genes that are differentially expressed in the roots during the induction of flowering. Data mining of public microarray experiments uncovered that about 200 genes whose mutations are reported to alter flowering time are expressed in the roots (i.

View Article and Find Full Text PDF

Chlorophyll fluorescence is an information-rich signal which provides an access to the management of light absorbed by PSII. A good example of this is the succession of fast fluorescence fluctuations during light-induced photosynthetic induction after dark-adaptation. During this period, the fluorescence trace exhibits several inflexion points: O-J-I-P-S-M-T.

View Article and Find Full Text PDF

Flowering is a hot topic in Plant Biology and important progress has been made in Arabidopsis thaliana toward unraveling the genetic networks involved. The increasing complexity and the explosion of literature however require development of new tools for information management and update. We therefore created an evolutive and interactive database of flowering time genes, named FLOR-ID (Flowering-Interactive Database), which is freely accessible at http://www.

View Article and Find Full Text PDF

Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases.

View Article and Find Full Text PDF
Article Synopsis
  • Well-developed root systems are essential for plant health and crop yields, but studying them is difficult due to their growth underground and complex architecture.
  • Recent advances in phenotyping methods have improved the study of thicker roots, but traditional methods like in vitro culture are limited to young Arabidopsis thaliana seedlings.
  • The newly designed hydroponic rhizotrons (rhizoponics) allow for comprehensive study of root and shoot development in Arabidopsis from seed to adulthood, offering controlled environments and easy access for measurements, hence improving plant physiology research.
View Article and Find Full Text PDF

The in silico prediction of cis-acting elements in a genome is an efficient way to quickly obtain an overview of the biological processes controlled by a trans-acting factor, and connections between regulatory networks. Several regulon prediction web tools are available, designed to identify DNA motifs predicted to be bound by transcription factors using position weight matrix-based algorithms. In this paper we expose and discuss the conflicting objectives of software creators (bioinformaticians) and software users (biologists), who aim for reliable and exhaustive prediction outputs, respectively.

View Article and Find Full Text PDF

Tomato is a major crop plant and several mutants have been selected for breeding but also for isolating important genes that regulate flowering and sympodial growth. Besides, current research in developmental biology aims at revealing mechanisms that account for diversity in inflorescence architectures. We therefore found timely to review the current knowledge of the genetic control of flowering in tomato and to integrate the emerging network into modeling attempts.

View Article and Find Full Text PDF

Root chicory (Cichorium intybus var. sativum) is a biennial crop, but is harvested to obtain root inulin at the end of the first growing season before flowering. However, cold temperatures may vernalize seeds or plantlets, leading to incidental early flowering, and hence understanding the molecular basis of vernalization is important.

View Article and Find Full Text PDF

* Of the Brassicaceae, Sinapis alba has been intensively studied as a physiological model of induction of flowering by a single long day (LD), while molecular-genetic analyses of Arabidopsis thaliana have disclosed complex interactions between pathways controlling flowering in response to different environmental cues, such as photoperiod and vernalization. The vernalization process in S. alba was therefore analysed here.

View Article and Find Full Text PDF

Transient starch production is thought to strongly control plant growth and response to elevated CO2. We tested this hypothesis with an experimentally based mechanistic model in Arabidopsis thaliana. Experiments were conducted on wild-type (WT) A.

View Article and Find Full Text PDF

Background: Arabidopsis thaliana is now the model organism for genetic and molecular plant studies, but growing conditions may still impair the significance and reproducibility of the experimental strategies developed. Besides the use of phytotronic cabinets, controlling plant nutrition may be critical and could be achieved in hydroponics. The availability of such a system would also greatly facilitate studies dealing with root development.

View Article and Find Full Text PDF