Developing nanoscale electrical characterization techniques adapted to three-dimensional (3D) geometry is essential for optimization of the epitaxial structure and doping process of nano- and microwires. In this paper, we demonstrate the assessment of the depletion width as well as the doping profile at the nanoscale of individual microwire core-shell light-emitting devices by capacitance-voltage measurements. A statistical study carried out on single wires shows the consistency of the doping profile values measured for individual microwires compared to assemblies of hundreds of wires processed on the same sample.
View Article and Find Full Text PDFWhereas nanowire (NW)-based devices offer numerous advantages compared to bulk ones, their performances are frequently limited by an incomplete understanding of their properties where surface effect should be carefully considered. Here, we demonstrate the ability to spatially map the electric field and determine the exciton diffusion length in NW by using an electron beam as the single excitation source. This approach is performed on numerous single ZnO NW Schottky diodes whose NW radius vary from 42.
View Article and Find Full Text PDF