Background: Duodenal signaling affects esophageal motility and perception, both pathophysiological factors in gastroesophageal reflux disease (GERD). Duodenal gene expression abnormalities, contributing to altered esophageal sensorimotor function, have not been reported to date.
Aim: To identify differentially expressed genes in GERD patients' duodenum.
Prostaglandins (PG) regulate many biological processes, among others inflammatory reactions. Cyclooxygenases-1 and -2 (COX-1 and COX-2) catalyse PG synthesis. Since this step is rate limiting, the regulation of COX expression is of critical importance to PG biology.
View Article and Find Full Text PDFMyofibroblasts are specialized fibroblasts that contribute to wound healing by producing extracellular matrix and by contracting the granulation tissue. They appear in a phase of wound healing when the dermis strongly interacts with activated epidermal keratinocytes. Direct co-culture with keratinocytes upregulates TGFbeta activity and also induces fibroblast to differentiate into alpha-smooth muscle actin (alphaSMA)-positive myofibroblasts.
View Article and Find Full Text PDFIn wound healing epidermal-dermal interactions are known to regulate keratinocyte proliferation and differentiation. To find out how fibroblasts respond to epithelial stimuli, we characterized fibroblasts in monolayer co-culture with keratinocytes. On co-culture numerous extracellular matrix- and smooth muscle cell-associated gene transcripts were up-regulated in fibroblasts, suggesting a differentiation into myofibroblasts.
View Article and Find Full Text PDFThree mouse lines expressing Cre recombinase under the control of the human K14 promoter induced specific deletion of loxP flanked target sequences in the epidermis, in tongue, and thymic epithelium of the offspring where the Cre allele was inherited from the father. Where the mother carried the Cre allele, loxP flanked sequences were completely deleted in all tissues of the offspring, even in littermates that did not inherit the Cre allele. This maternally inherited phenotype indicates that the human K14 promoter is transcriptionally active in murine oocytes and that the enzyme remains active until after fertilization, even when the Cre allele becomes transmitted to the polar bodies during meiosis.
View Article and Find Full Text PDF