This report summarizes the 10th biennial meeting of The Epithelial Mesenchymal Transition International Association (TEMTIA), that took place in Paris on November 7-10, 2022. It provides a short but comprehensive introduction to the presentations and discussions that took place during the 3-day meeting. Similarly to previous TEMTIA meetings, TEMTIA X reviewed the most recent aspects of the epithelial-mesenchymal transition (EMT), a cellular process involved during distinct stages of development but also during wound healing and fibrosis to some degree.
View Article and Find Full Text PDFIn cancer patients, immune cells are often functionally compromised due to the immunosuppressive features of the tumor microenvironment (TME) which contribute to the failures in cancer therapies. Clinical and experimental evidence indicates that developing tumors adapt to the immunological environment and create a local microenvironment that impairs immune function by inducing immune tolerance and invasion. In this context, microenvironmental hypoxia, which is an established hallmark of solid tumors, significantly contributes to tumor aggressiveness and therapy resistance through the induction of tumor plasticity/heterogeneity and, more importantly, through the differentiation and expansion of immune-suppressive stromal cells.
View Article and Find Full Text PDFAim: Functional screening of new pharmaceutical compounds requires clinically relevant models to monitor essential cellular and immune responses during cancer progression, with or without treatment. Beyond survival, the emergence of resistant tumor cell clones should also be considered, including specific properties related to plasticity, such as invasiveness, stemness, escape from programmed cell death, and immune response. Numerous pathways are involved in these processes.
View Article and Find Full Text PDFThe recent trend in 3D cell modeling has fostered the emergence of a wide range of models, addressing very distinct goals ranging from the fundamental exploration of cell-cell interactions to preclinical assays for personalized medicine. It is clear that no single model will recapitulate the complexity and dynamics of in vivo situations. The key is to define the critical points, achieve a specific goal and design a model where they can be validated.
View Article and Find Full Text PDFVon Hippel-Lindau () is a rare hereditary syndrome due to mutations of the tumor suppressor gene. Patients harboring the R167Q mutation of the gene have a high risk of developing ccRCCs. We asked whether the R167Q mutation with critical aspects of pseudo-hypoxia interferes with tumor plasticity.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly.
View Article and Find Full Text PDFNovel immunotherapy approaches have provided durable remission in a significant number of cancer patients with cancers previously considered rapidly lethal. Nonetheless, the high degree of nonresponders, and in some cases the emergence of resistance in patients who do initially respond, represents a significant challenge in the field of cancer immunotherapy. These issues prompt much more extensive studies to better understand how cancer cells escape immune surveillance and resist immune attacks.
View Article and Find Full Text PDFCurr Top Dev Biol
December 2015
Epithelial-mesenchymal transition (EMT) is a developmental cellular process occurring during early embryo development, including gastrulation and neural crest cell migration. It can be broken down in distinct functional steps: (1) loss of baso-apical polarization characterized by cytoskeleton, tight junctions, and hemidesmosomes remodeling; (2) individualization of cells, including a decrease in cell-cell adhesion forces, (3) emergence of motility, and (4) invasive properties, including passing through the subepithelial basement membrane. These phases occur in an uninterrupted process, without requiring mitosis, in an order and with a degree of completion dictated by the microenvironment.
View Article and Find Full Text PDFBackground: Morphogenesis results from the coordination of distinct cell signaling pathways controlling migration, differentiation, apoptosis, and proliferation, along stem/progenitor cell dynamics. To decipher this puzzle, we focused on epithelial-mesenchymal transition (EMT) "master genes". EMT has emerged as a unifying concept, involving cell-cell adhesion, migration and apoptotic pathways.
View Article and Find Full Text PDFSuccessful cutaneous wound repair involves in a series of tightly coordinated and overlapping phases, including inflammation and clot formation, keratinocyte activation and migration (re-epithelialization), basement membrane and ECM remodeling, followed by dermal and epidermal maturation. We examine here the process of wound re-epithelialization, emphasizing the similarity between re-epithelialization and developmental epithelial-mesenchymal transition (EMT), based on morphological and molecular criteria. Changes in cell-cell and cell-substrate adhesion during re-epithelialization are also reminiscent of pathological processes described during malignant tumor progression, another situation involving partial or total EMT.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
June 2010
Since its initial description, the interconversion between epithelial and mesenchymal cells (designed as epithelial-mesenchymal or mesenchymal-epithelial transition, EMT or MET, respectively) has received special attention since it provides epithelial cells with migratory features. Different studies using cell lines have identified cytokines, intercellular signaling elements and transcriptional factors capable of regulating this process. Particularly, the identification of Snail family members as key effectors of EMT has opened new ways for the study of this cellular process.
View Article and Find Full Text PDFTP63 is a p53-related gene that contains two alternative promoters, which give rise to transcripts that encode proteins with (TAp63) or without (DeltaNp63) an amino-transactivating domain. Whereas the expression of p63 is required for proper development of epithelial structures, the role of p63 in tumorigenesis remains unclear. Here, we investigated the role of Snail and Slug transcription factors, known to promote epithelial-to-mesenchymal transitions during development and cancer, in the regulation of p63 isoforms in human squamous cell carcinoma (SCC).
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) describes a series of rapid changes in cellular phenotype. During EMT, epithelial cells down-modulate cell-cell adhesion structures, alter their polarity, reorganize their cytoskeleton, and become isolated, motile, and resistant to anoikis. The term EMT is often applied to distinct biological events as if it were a single conserved process, but in fact EMT-related processes can vary in intensity from a transient loss of cell polarity to the total cellular reprogramming, as found by transcriptional analysis.
View Article and Find Full Text PDFReepithelialization during cutaneous wound healing involves numerous signals that result in basal keratinocyte activation, spreading, and migration, all linked to a loosening of cell-cell adhesion structures. The transcription factor Slug is required for this process, and EGF treatment of human keratinocytes induced activating phosphorylation of Erk5 that coincides with slug transcription. Accordingly, ectopic activation of Erk5 led to increased Slug mRNA levels and faster wound healing, whereas keratinocyte migration was totally blocked by Erk5 pathway inhibition.
View Article and Find Full Text PDFEpithelial metaplasia (EpM) is an acquired tissue abnormality resulting from the transformation of epithelium into another tissue with a different structure and function. This adaptative process is associated with an increased frequency of (pre)cancerous lesions. We propose that EpM is involved in cancer development by altering the expression of adhesion molecules important for cell-mediated antitumor immunity.
View Article and Find Full Text PDFFibroblast growth factors (FGFs) are potent mitogens, morphogens, and inducers of angiogenesis, and FGF signaling governs the genesis of diverse tissues and organs from the earliest stages. With such fundamental embryonic and homeostatic roles, it follows that aberrant FGF signaling underlies a variety of diseases. Pathological modifications to FGF expression are known to cause salivary gland aplasia and autosomal dominant hypophosphatemic rickets, while mutations in FGF receptors (FGFRs) result in a range of skeletal dysplasias.
View Article and Find Full Text PDFPurpose: Carcinoma progression is linked to a partially dedifferentiated epithelial cell phenotype. As previously suggested, this regulation could involve transcription factors, Snail and Slug, known to promote epithelial-mesenchymal transitions during development. Here, we investigate the role of Snail and Slug in human breast cancer progression.
View Article and Find Full Text PDFIn this chapter, we describe a simple and relatively rapid technique for detecting low-abundance slug mRNA in cultured cells. The procedure uses nonradioactive digoxigenin-labeled RNA probes that are more sensitive than deoxyribonucleic probes and simpler to detect than radioactively labeled probes. Cells are grown in glass chamber slides, fixed in an acidic fixative, dehydrated through ethanol and xylene, permeabilized in pepsin, and post-fixed.
View Article and Find Full Text PDFDuring re-epithelialization of cutaneous wounds, keratinocytes recapitulate several aspects of the embryonic process of epithelial-mesenchymal transition (EMT), including migratory activity and reduced intercellular adhesion. The transcription factor Slug modulates EMT in the embryo and controls desmosome number in adult epithelial cells, therefore, we investigated Slug expression and function during cutaneous wound re-epithelialization. Slug expression was elevated in keratinocytes bordering cutaneous wounds in mice in vivo, in keratinocytes migrating from mouse skin explants ex vivo, and in human keratinocytes at wound margins in vitro.
View Article and Find Full Text PDF