Using small-angle neutron scattering (SANS), we examine the structure and conformational behavior of wheat arabinoxylan (AX) prepared at various concentrations in a sodium phosphate aqueous buffer. As for another major hemicellulose, xyloglucan, we observe a small number of large clusters surrounded by AX chains that behave exactly as a polymer in good solvent with a Flory exponent ν = 0.588.
View Article and Find Full Text PDFRecent advances have been made in coupling microfluidic chips with X-ray equipment, enabling structural analysis of samples directly in microfluidic devices. This important step mainly took place at powerful synchrotron facilities because of the need for a beam reduced in size to fit the microfluidic channel dimensions but still intense. In this work, we discuss how improvements of an X-ray laboratory beamline and an optimal design of a microfluidic device allow reliable structural information to be obtained without the need for a synchrotron.
View Article and Find Full Text PDFLanthanide (Ln)-doped upconversion nanoparticles (UCNPs) often suffer from weak luminescence, especially when their sizes are ultrasmall (less than 10 nm). Enhancing the upconversion luminescence (UCL) efficiency of ultrasmall UCNPs has remained a challenge that must be undertaken if any practical applications are to be envisaged. Herein, we present a Ln-doped oxysulfide@fluoride core/shell heterostructure which shows efficient UCL properties under 980 nm excitation and good stability in solution.
View Article and Find Full Text PDFUltrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization-Diels-Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride.
View Article and Find Full Text PDFIrrespective of their biological origin, most proteins are composed of several elementary domains connected by linkers. These domains are either functionally independent units, or part of larger multidomain structures whose functions are defined by their spatial proximity. Carbohydrate-degrading enzymes provide examples of a range of multidomain structures, in which catalytic protein domains are frequently appended to one or more non-catalytic carbohydrate-binding modules which specifically bind to carbohydrate motifs.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2021
Hypothesis: Recently, a low molecular weight hydrogel based on a carbohydrate alkyl amide has been successfully used as biomaterial for neuron cell culture and for 3D printing. Varying the molecular structure should make it possible to extend the library of carbohydrate low molecular weight hydrogels available for these applications and to improve their performances.
Experiments: Thirteen molecules easy to synthetize and designed to be potentially biocompatible were prepared.
In this comprehensive study, the interaction of human serum albumin (HSA) with poly(acrylic acid) (PAA) was explored using small angle X-ray scattering (SAXS) combined with chromatography. The results revealed the formation of a complex between HSA macromolecules and PAA chains but solely under some specific conditions of the ionic strength and pH of the medium. In fact, this binding was found to take place only at pH close to 5 and at low ionic strength (0.
View Article and Find Full Text PDFThe partial enzymatic hydrolysis of wheat gliadins constitutes an interesting tool to unravel their structural specificity. In this work, the structure and conformation of γ-gliadin were investigated through its limited chymotrypsic digestion. Using a combination of computational, biochemical and biophysical tools, we studied each of its N and C terminal domains.
View Article and Find Full Text PDFSynergism between enzymes is of crucial importance in cell metabolism. This synergism occurs often through a spatial organisation favouring proximity and substrate channelling. In this context, we developed a strategy for evaluating the impact of the geometry between two enzymes involved in nature in the recycling of the carbon derived from plant cell wall polymers.
View Article and Find Full Text PDFA key challenge for designing hybrid materials is the development of chemical tools to control the organization of inorganic nanoobjects at low scales, from mesoscopic (~µm) to nanometric (~nm). So far, the most efficient strategy to align assemblies of nanoparticles consists in a bottom-up approach by decorating block copolymer lamellae with nanoobjects. This well accomplished procedure is nonetheless limited by the thermodynamic constraints that govern copolymer assembly, the entropy of mixing as described by the Flory-Huggins solution theory supplemented by the critical influence of the volume fraction of the block components.
View Article and Find Full Text PDFAs all the viruses belonging to the order, the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV) is encapsidated by the viral nucleoprotein N. N protein polymerizes along the genomic and anti-genomic RNAs during replication. This requires the maintenance of the neosynthesized N protein in a monomeric and RNA-free form by the viral phosphoprotein P that plays the role of a chaperone protein, forming a soluble N-P complex.
View Article and Find Full Text PDFGurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.
View Article and Find Full Text PDFDystrophin, encoded by the gene, is critical for maintaining plasma membrane integrity during muscle contraction events. Mutations in the gene disrupting the reading frame prevent dystrophin production and result in severe Duchenne muscular dystrophy (DMD); in-frame internal deletions allow production of partly functional internally deleted dystrophin and result in less severe Becker muscular dystrophy (BMD). Many known BMD deletions occur in dystrophin's central domain, generally considered to be a monotonous rod-shaped domain based on the knowledge of spectrin family proteins.
View Article and Find Full Text PDFRNase P is a universal enzyme that removes 5' leader sequences from tRNA precursors. The enzyme is therefore essential for maturation of functional tRNAs and mRNA translation. RNase P represents a unique example of an enzyme that can occur either as ribonucleoprotein or as protein alone.
View Article and Find Full Text PDFModular polyketide synthases (PKSs) direct the biosynthesis of clinically valuable secondary metabolites in bacteria. The fidelity of chain growth depends on specific recognition between successive subunits in each assembly line: interactions mediated by C- and N-terminal "docking domains" (DDs). We have identified a new family of DDs in trans-acyl transferase PKSs, exemplified by a matched pair from the virginiamycin (Vir) system.
View Article and Find Full Text PDFNon-homologous end joining is a ligation process repairing DNA double strand breaks in eukaryotes and many prokaryotes. The ring structured eukaryotic Ku binds DNA ends and recruits other factors which can access DNA ends through the threading of Ku inward the DNA, making this protein a key ingredient for the scaffolding of the NHEJ machinery. However, this threading ability seems unevenly conserved among bacterial Ku.
View Article and Find Full Text PDFTelomere integrity is essential to maintain genome stability, and telomeric dysfunctions are associated with cancer and aging pathologies. In human, the shelterin complex binds TTAGGG DNA repeats and provides capping to chromosome ends. Within shelterin, RAP1 is recruited through its interaction with TRF2, and TRF2 is required for telomere protection through a network of nucleic acid and protein interactions.
View Article and Find Full Text PDFMutations in human mitochondrial aminoacyl-tRNA synthetases are associated with a variety of neurodegenerative disorders. The effects of these mutations on the structure and function of the enzymes remain to be established. Here, we investigate six mutants of the aspartyl-tRNA synthetase correlated with leukoencephalopathies.
View Article and Find Full Text PDFYabA negatively regulates initiation of DNA replication in low-GC Gram-positive bacteria. The protein exerts its control through interactions with the initiator protein DnaA and the sliding clamp DnaN. Here, we combined X-ray crystallography, X-ray scattering (SAXS), modeling and biophysical approaches, with in vivo experimental data to gain insight into YabA function.
View Article and Find Full Text PDFAlthough the biochemical processes of lipid digestion are well-known, the biophysical ones, responsible for the assembly of molecules into functional structures, lack studies resolving both time and space scales. About 35 years ago, the seminal microscopy study of Patton and Carey constituted a major advance to reach this goal. Nowadays, new perspectives arise from the availability of large facilities scattering techniques, able to monitor the dynamics of multi-scale assemblies with unprecedented resolutions.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
June 2015
The first crystal structure of Uhgb_MP, a β-1,4-mannopyranosyl-chitobiose phosphorylase belonging to the GH130 family which is involved in N-glycan degradation by human gut bacteria, was solved at 1.85 Å resolution in the apo form and in complex with mannose and N-acetylglucosamine. SAXS and crystal structure analysis revealed a hexameric structure, a specific feature of GH130 enzymes among other glycoside phosphorylases.
View Article and Find Full Text PDFThe non-coding RNA 7SK is the scaffold for a small nuclear ribonucleoprotein (7SKsnRNP) which regulates the function of the positive transcription elongation factor P-TEFb in the control of RNA polymerase II elongation in metazoans. The La-related protein LARP7 is a component of the 7SKsnRNP required for stability and function of the RNA. To address the function of LARP7 we determined the crystal structure of its La module, which binds a stretch of uridines at the 3'-end of 7SK.
View Article and Find Full Text PDF