Different signaling mechanisms concur to ensure robust tissue patterning and cell fate instruction during animal development. Most of these mechanisms rely on signaling proteins that are produced, transported, and detected. The spatiotemporal dynamics of signaling molecules are largely unknown, yet they determine signal activity's spatial range and time frame.
View Article and Find Full Text PDFWnt/β-catenin signalling has been implicated in the terminal asymmetric divisions of neuronal progenitors in vertebrates and invertebrates. However, the role of Wnt ligands in this process remains poorly characterized. Here, we used the terminal divisions of the embryonic neuronal progenitors in to characterize the role of Wnt ligands during this process, focusing on a lineage that produces the cholinergic interneuron AIY.
View Article and Find Full Text PDFHfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNA. Besides these RNA-related functions, Hfq has also been described as one of the nucleoid associated proteins shaping the bacterial chromosome.
View Article and Find Full Text PDFCell polarity refers to a functional spatial organization of proteins that is crucial for the control of essential cellular processes such as growth and division. To establish polarity, cells rely on elaborate regulation networks that control the distribution of proteins at the cell membrane. In fission yeast cells, a microtubule-dependent network has been identified that polarizes the distribution of signaling proteins that restricts growth to cell ends and targets the cytokinetic machinery to the middle of the cell.
View Article and Find Full Text PDFCurr Opin Cell Biol
February 2016
Molecular components of the cell, such as lipids, proteins or RNA molecules, can associate through weak interactions and form clusters. A growing number of studies have shown that clustering of molecules is crucial for cell functions such as signal optimization and polarization. Clustering provides an intermediate level of organization between the molecular and cellular scales.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
Cellular morphogenesis relies partly on cell polarization by the cytoskeleton. In the fission yeast Schizosaccharomyces pombe, it is well established that microtubules (MTs) deliver the spatial cue Tea1, a kelch repeat protein, to the tip regions to direct the growth machinery at the cell tips driving the linear extension of the rod-shaped organism to maintain a straight long axis. Here, we report the characterization of Knk1 (kink), a previously unidentified member of the superfamily of ATPases associated with various cellular activities (AAA(+)), whose deletion causes a unique morphological defect characterized by the formation of kinks close to cell tips.
View Article and Find Full Text PDFThe ability to spatially confine living cells or small organisms while dynamically controlling their aqueous environment is important for a host of microscopy applications. Here, we show how polyacrylamide layers can be patterned to construct simple microfluidic devices for this purpose. We find that polyacrylamide gels can be molded like PDMS into micron-scale structures that can enclose organisms, while being permeable to liquids, and transparent to allow for microscopic observation.
View Article and Find Full Text PDFMicrotubules in spindles are too dense to resolve by light microscopy, even with super-resolution methods. Using a new method based on laser-ablation techniques, Brugués et al. present the first quantitative characterization of the vertebrate meiotic spindle and propose an assembly mechanism for building this architecture.
View Article and Find Full Text PDFGenomic DNA in eukaryotic cells is organized in supercoiled chromatin fibers, which undergo dynamic changes during such DNA metabolic processes as transcription or replication. Indeed, DNA-translocating enzymes like polymerases produce physical constraints in vivo. We used single-molecule micromanipulation by magnetic tweezers to study the response of chromatin to mechanical constraints in the same range as those encountered in vivo.
View Article and Find Full Text PDFMechanical manipulation of single DNA molecules can provide novel information about DNA properties and protein-DNA interactions. Here we describe and characterize a useful method for manipulating desired DNA sequences from any organism with optical tweezers. Molecules are produced from either genomic or cloned DNA by PCR using labeled primers and are tethered between two optically trapped microspheres.
View Article and Find Full Text PDF