The pancreatic innervation undergoes dynamic remodeling during the development of pancreatic ductal adenocarcinoma (PDAC). Denervation experiments have shown that different types of axons can exert either pro- or anti-tumor effects, but conflicting results exist in the literature, leaving the overall influence of the nervous system on PDAC incompletely understood. To address this gap, we propose a continuous mathematical model of nerve-tumor interactions that allows in silico simulation of denervation at different phases of tumor development.
View Article and Find Full Text PDFNeuronal nerve processes in the tumor microenvironment were highlighted recently. However, the origin of intra-tumoral nerves remains poorly known, in part because of technical difficulties in tracing nerve fibers via conventional histological preparations. Here, we employ three-dimensional (3D) imaging of cleared tissues for a comprehensive analysis of sympathetic innervation in a murine model of pancreatic ductal adenocarcinoma (PDAC).
View Article and Find Full Text PDFMotivation: Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference for models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated.
View Article and Find Full Text PDFDeciphering invasion routes from molecular data is crucial to understanding biological invasions, including identifying bottlenecks in population size and admixture among distinct populations. Here, we unravel the invasion routes of the invasive pest Drosophila suzukii using a multi-locus microsatellite dataset (25 loci on 23 worldwide sampling locations). To do this, we use approximate Bayesian computation (ABC), which has improved the reconstruction of invasion routes, but can be computationally expensive.
View Article and Find Full Text PDFMotivation: Approximate Bayesian computation (ABC) methods provide an elaborate approach to Bayesian inference on complex models, including model choice. Both theoretical arguments and simulation experiments indicate, however, that model posterior probabilities may be poorly evaluated by standard ABC techniques.
Results: We propose a novel approach based on a machine learning tool named random forests (RF) to conduct selection among the highly complex models covered by ABC algorithms.
Understanding the demographic history of populations and species is a central issue in evolutionary biology and molecular ecology. In this work, we develop a maximum-likelihood method for the inference of past changes in population size from microsatellite allelic data. Our method is based on importance sampling of gene genealogies, extended for new mutation models, notably the generalized stepwise mutation model (GSM).
View Article and Find Full Text PDFMotivation: DIYABC is a software package for a comprehensive analysis of population history using approximate Bayesian computation on DNA polymorphism data. Version 2.0 implements a number of new features and analytical methods.
View Article and Find Full Text PDFMolecular markers produced by next-generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual-based analyses, for considerably lower library construction and sequencing efforts.
View Article and Find Full Text PDFApproximate Bayesian computation has become an essential tool for the analysis of complex stochastic models when the likelihood function is numerically unavailable. However, the well-established statistical method of empirical likelihood provides another route to such settings that bypasses simulations from the model and the choices of the approximate Bayesian computation parameters (summary statistics, distance, tolerance), while being convergent in the number of observations. Furthermore, bypassing model simulations may lead to significant time savings in complex models, for instance those found in population genetics.
View Article and Find Full Text PDFInexpensive short-read sequencing technologies applied to reduced representation genomes is revolutionizing genetic research, especially population genetics analysis, by allowing the genotyping of massive numbers of single-nucleotide polymorphisms (SNP) for large numbers of individuals and populations. Restriction site-associated DNA (RAD) sequencing is a recent technique based on the characterization of genomic regions flanking restriction sites. One of its potential drawbacks is the presence of polymorphism within the restriction site, which makes it impossible to observe the associated SNP allele (i.
View Article and Find Full Text PDFComparison of demo-genetic models using Approximate Bayesian Computation (ABC) is an active research field. Although large numbers of populations and models (i.e.
View Article and Find Full Text PDF