Arq Bras Endocrinol Metabol
March 2008
Type 1 diabetes mellitus (T1D) is characterized by severe insulin deficiency resulting from chronic and progressive destruction of pancreatic beta-cells by the immune system. The triggering of autoimmunity against the beta-cells is probably caused by environmental agent(s) acting in the context of a predisposing genetic background. Once activated, the immune cells invade the islets and mediate their deleterious effects on beta-cells via mechanisms such as Fas/FasL, perforin/granzyme, reactive oxygen and nitrogen species and pro-inflammatory cytokines.
View Article and Find Full Text PDFEndoplasmic reticulum stress-mediated apoptosis may play an important role in the destruction of pancreatic beta-cells, thus contributing to the development of type 1 and type 2 diabetes. One of the regulators of endoplasmic reticulum stress-mediated cell death is the CCAAT/enhancer binding protein (C/EBP) homologous protein (Chop). We presently studied the molecular regulation of Chop expression in insulin-producing cells (INS-1E) in response to three pro-apoptotic and endoplasmic reticulum stress-inducing agents, namely the cytokines interleukin-1beta + interferon-gamma, the free fatty acid palmitate, and the sarcoendoplasmic reticulum pump Ca(2+) ATPase blocker cyclopiazonic acid (CPA).
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2004
Nrarp encodes for an evolutionarily conserved small ankyrin repeat-containing protein that functions as a negative regulator of Notch signaling. Interestingly, increased Nrarp transcription was observed following induction of Notch signaling, suggesting the existence of a negative feedback loop. We show here that both mouse and human promoter regions of Nrarp share two conserved regions located approximately 2 and approximately 3 kb upstream of the transcription start site each containing a perfect putative binding site for the Notch-dependent transcription factor Su(H).
View Article and Find Full Text PDF