We report high resolution coherent population trapping on a single hole spin in a semiconductor quantum dot. The absorption dip signifying the formation of a dark state exhibits an atomic physicslike dip width of just 10 MHz. We observe fluctuations in the absolute frequency of the absorption dip, evidence of very slow spin dephasing.
View Article and Find Full Text PDFRepetitive wet thermal oxidations of a tapered oxide aperture in a micropillar structure are demonstrated. After each oxidation step the confined optical modes are analyzed at room temperature. Three regimes are identified.
View Article and Find Full Text PDFHybrid quantum information protocols are based on local qubits, such as trapped atoms, NV centers, and quantum dots, coupled to photons. The coupling is achieved through optical cavities. Here we demonstrate far-field optimized H1 photonic crystal membrane cavities combined with an additional back reflection mirror below the membrane that meet the optical requirements for implementing hybrid quantum information protocols.
View Article and Find Full Text PDFWe present a detailed experimental characterization of the spectral and spatial structure of the confined optical modes for oxide-apertured micropillar cavities, showing good-quality Hermite-Gaussian profiles, easily mode-matched to external fields. We further derive a relation between the frequency splitting of the transverse modes and the expected Purcell factor. Finally, we describe a technique to retrieve the profile of the confining refractive index distribution from the spatial profiles of the modes.
View Article and Find Full Text PDFAcousto-electric charge conveyance induced by a surface acoustic wave (SAW) is employed to dissociate photogenerated excitons. Over macroscopic distances, both electrons and holes are injected sequentially into a remotely positioned, isolated and high quality quantum emitter, a self-assembled quantum post. This process is found to be highly efficient and to exhibit improved stability at high acoustic powers when compared to direct optical pumping at the position of the quantum post.
View Article and Find Full Text PDFWe investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (≈-0.22 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.
View Article and Find Full Text PDFProgress in controlling the size, shape, and composition of quantum dots (QDs) as well as their positioning will be crucial to further advances in the fields of quantum information and device applications. The growth of QDs into lattices using controlled positioning of the QD nucleation centers is a possible method. QD positioning is also much needed for further development of QD microcavities and photonic-crystal based devices that are used for quantum information applications.
View Article and Find Full Text PDF"Quantum posts" are roughly cylindrical semiconductor nanostructures that are embedded in an energetically shallower "matrix" quantum well of comparable thickness. We report measurements of voltage-controlled charging and terahertz absorption of 30 nm thick InGaAs quantum wells and posts. Under flat-band (zero-electric field) conditions, the quantum posts each contain approximately six electrons, and an additional ~2.
View Article and Find Full Text PDFIndividual self-assembled quantum dots and quantum posts are studied under the influence of a surface acoustic wave. In optical experiments we observe an acoustically induced switching of the occupancy of the nanostructures along with an overall increase of the emission intensity. For quantum posts, switching occurs continuously from predominantly charged excitons (dissimilar number of electrons and holes) to neutral excitons (same number of electrons and holes) and is independent of whether the surface acoustic wave amplitude is increased or decreased.
View Article and Find Full Text PDFWe demonstrate an optical modulator based on a single quantum dot strongly coupled to a photonic crystal cavity. A vertical p-i-n junction is used to tune the quantum dot and thereby modulate the cavity transmission, with a measured instrument-limited response time of 13 ns. A modulator based on a single quantum dot promises operation at high bandwidth and low power.
View Article and Find Full Text PDFWe describe the resonant excitation of a single quantum dot that is strongly coupled to a photonic crystal nanocavity. The cavity represents a spectral window for resonantly probing the optical transitions of the quantum dot. We observe narrow absorption lines attributed to the single and biexcition quantum dot transitions and measure antibunched population of the detuned cavity mode [g{(2)}(0)=0.
View Article and Find Full Text PDFThe resonance frequency of an InAs quantum dot strongly coupled to a GaAs photonic-crystal cavity was electrically controlled via the quadratic quantum confined Stark effect. Stark shifts up to 0.3 meV were achieved using a lateral Schottky electrode that created a local depletion region at the location of the quantum dot.
View Article and Find Full Text PDFSemiconductors have uniquely attractive properties for electronics and photonics. However, it has been difficult to find a highly coherent quantum state in a semiconductor for applications in quantum sensing and quantum information processing. We report coherent population trapping, an optical quantum interference effect, on a single hole.
View Article and Find Full Text PDFWe report on magneto-photoluminescence studies of InAs/GaAs quantum dots (QDs) of considerably different densities, from dense ensembles down to individual dots. It is found that a magnetic field applied in Faraday geometry decreases the photoluminescence (PL) intensity of QD ensembles, which is not accompanied by the corresponding increase of PL signal of the wetting layer on which QDs are grown. The model suggested to explain these data assumes considerably different strengths of suppression of electron and hole fluxes by a magnetic field.
View Article and Find Full Text PDFWe demonstrate dipole induced transparency in an integrated photonic crystal device. We show that a single weakly coupled quantum dot can control the transmission of photons through a photonic crystal cavity that is coupled to waveguides on the chip. Control over the quantum dot and cavity resonance via local temperature tuning, as well as efficient out-coupling with an integrated grating structure is demonstrated.
View Article and Find Full Text PDFWe demonstrate optically detected spin resonance of a single electron confined to a self-assembled quantum dot. The dot is rendered dark by resonant optical pumping of the spin with a laser. Contrast is restored by applying a radio frequency (rf) magnetic field at the spin resonance.
View Article and Find Full Text PDFWe demonstrate storage of excitons in a single nanostructure, a self-assembled quantum post. After generation, electrons and holes forming the excitons are separated by an electric field toward opposite ends of the quantum post inhibiting their radiative recombination. After a defined time, the spatially indirect excitons are reconverted to optically active direct excitons by switching the electric field.
View Article and Find Full Text PDFOptical nonlinearities enable photon-photon interaction and lie at the heart of several proposals for quantum information processing, quantum nondemolition measurements of photons, and optical signal processing. To date, the largest nonlinearities have been realized with single atoms and atomic ensembles. We show that a single quantum dot coupled to a photonic crystal nanocavity can facilitate controlled phase and amplitude modulation between two modes of light at the single-photon level.
View Article and Find Full Text PDFThe spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 10(4) to 10(6) spins of the host nuclei in the quantum dot.
View Article and Find Full Text PDFSolid-state cavity quantum electrodynamics (QED) systems offer a robust and scalable platform for quantum optics experiments and the development of quantum information processing devices. In particular, systems based on photonic crystal nanocavities and semiconductor quantum dots have seen rapid progress. Recent experiments have allowed the observation of weak and strong coupling regimes of interaction between the photonic crystal cavity and a single quantum dot in photoluminescence.
View Article and Find Full Text PDFInAs/GaAs quantum dots have been subjected to a lateral external electric field in low-temperature microphotoluminescence measurements. It is demonstrated that the dot PL signal could be increased several times depending on the magnitude of the external field and the strength of the internal (built-in) electric field, which could be altered by an additional infrared illumination of the sample. The observed effects are explained by a model that accounts for the essentially faster lateral transport of the photoexcited carriers achieved in an electric field.
View Article and Find Full Text PDFWe present a study of the light extraction from CdSe/ZnS core/shell colloidal quantum dot thin films deposited on quantum well InGaN/GaN photonic crystal structures. The two-dimensional photonic crystal defined by nanoimprint lithography is used to efficiently extract the guided light modes originating from both the quantum dot thin films and the InGaN quantum wells. Far-field photoluminescence spectra are used to measure the extraction enhancement factor of the quantum dot emission (x1.
View Article and Find Full Text PDFIndividual quantum dots have been studied by means of microphotoluminescence with dual-laser excitation. The additional infrared laser influences the dot charge configuration and increases the dot luminescence intensity. This is explained in terms of separate generation of excess electrons and holes into the dot from the two lasers.
View Article and Find Full Text PDFWe present an optical study of two closely stacked self-assembled InAs/GaAs quantum dots. The energy spectrum and correlations between photons subsequently emitted from a single pair provide not only clear evidence of coupling between the quantum dots but also insight into the coupling mechanism. Our results are in agreement with recent theories predicting that tunneling is largely suppressed between nonidentical quantum dots and that the interaction is instead dominated by dipole-dipole coupling and phonon-assisted energy transfer processes.
View Article and Find Full Text PDF