Adsorption using carbon materials is one of the most efficient techniques for removal of emerging contaminants such as pharmaceuticals from wastewater. However, high costs are a major hurdle for their large-scale application in areas currently under economic constraints. While most research focuses on decreasing the adsorbent price by increasing its capacity, treatment costs for exhausted adsorbents and their respective end-of-life scenarios are often neglected.
View Article and Find Full Text PDFAdsorption of six contaminants of emerging concern (CECs) - caffeine, chloramphenicol, carbamazepine, bisphenol A, diclofenac, and triclosan - from a multicomponent solution was studied using activated biochars obtained from three lignocellulosic feedstocks: wheat straw, softwood, and peach stones. Structural parameters related to the porosity and ash content of activated biochar and the hydrophobic properties of the CECs were found to influence the adsorption efficiency. For straw and softwood biochar, activation resulted in a more developed mesoporosity, whereas activation of peach stone biochar increased only the microporosity.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
July 2020
Activated carbon (AC) and activated biochar (ABC) are widely used as sorbents for micropollutant removal during water and wastewater treatment. Spent adsorbents can be treated in several ways, e.g.
View Article and Find Full Text PDF