SignificanceSoft materials can be toughened by creating dissipative mechanisms in stretchy matrixes. Yet using them over a wide range of temperatures requires dissipative mechanisms independent of stretch rate or temperature. We show that sacrificial covalent bonds in multiple network elastomers are most useful in toughening elastomers at high temperature and act synergistically with viscoelasticity at lower temperature.
View Article and Find Full Text PDFA classic paradigm of soft and extensible polymer materials is the difficulty of combining reversible elasticity with high fracture toughness, in particular for moduli above 1 MPa. Our recent discovery of multiple network acrylic elastomers opened a pathway to obtain precisely such a combination. We show here that they can be seen as true molecular composites with a well-cross-linked network acting as a percolating filler embedded in an extensible matrix, so that the stress-strain curves of a family of molecular composite materials made with different volume fractions of the same cross-linked network can be renormalized into a master curve.
View Article and Find Full Text PDF