Polymers (Basel)
August 2024
Polymer composites containing magnetic fillers are promising materials for a variety of applications, such as in energy storage and medical fields. To facilitate the engineering design of respective components, a comprehensive understanding of the mechanical behavior of such inhomogeneous and potentially highly anisotropic materials is important. Therefore, the authors created magnetic composites by compression molding.
View Article and Find Full Text PDFMaterials (Basel)
September 2022
Reducing the weight of electric conductors is an important task in the design of future electric air and ground vehicles. Fully electric aircraft, where high electric energies have to be distributed over significant distances, are a prime example. Multifunctional composite materials with both adequate structural and electrical properties are a promising approach to substituting conventional monofunctional components and achieving considerable mass reductions.
View Article and Find Full Text PDFA novel elevated-temperature and high-pressure in situ punch-shear-test cell was developed to qualify materials for reliable service in harsh environments representative of those typically encountered in oil and gas operations. The proposed modular and compact test device is an extension of the ASTM D 732 punch-shear method. Conventionally, materials are first exposed to harsh environments, then removed from the aging environment for mechanical testing.
View Article and Find Full Text PDFPolymers may absorb fluids from their surroundings via the natural phenomenon of swelling. Dimensional changes due to swelling can affect the function of polymer components, such as in the case of seals, microfluidic components and electromechanical sensors. An understanding of the swelling behavior of polymers and means for controlling it can improve the design of polymer components, for example, for the previously mentioned applications.
View Article and Find Full Text PDFPolymer composites containing ferromagnetic fillers are promising for applications relating to electrical and electronic devices. In this research, the authors modified an ultraviolet light (UV) curable prepolymer to additionally cure upon heating and validated a permanent magnet-based particle alignment system toward fabricating anisotropic magnetic composites. The developed dual-cure acrylate-based resin, reinforced with ferromagnetic fillers, was first tested for its ability to polymerize through UV and heat.
View Article and Find Full Text PDFMaterials (Basel)
October 2020
Thermoplastic fiber-reinforced polymer composites (TP-FRPC) are gaining popularity in industry owing to characteristics such as fast part fabrication, ductile material properties and high resistance to environmental degradation. However, TP-FRPC are prone to time-dependent deformation effects like creep under sustained loading, which can lead to significant dimensional changes and affect the safe operation of structures. Previous research in this context has focused, mainly, on testing of flat coupons.
View Article and Find Full Text PDFMagnetic composites play a significant role in various electrical and electronic devices. Properties of such magnetic composites depend on the particle microstructural distribution within the polymer matrix. In this study, a methodology to manufacture magnetic composites with isotropic and anisotropic particle distribution was introduced using engineered material formulations and manufacturing methods.
View Article and Find Full Text PDFProperties such as low specific gravity and cost make polymers attractive for many engineering applications, yet their mechanical, thermal, and electrical properties are typically inferior compared to other engineering materials. Material designers have been seeking to improve polymer properties, which may be achieved by adding suitable particulate fillers. However, the design process is challenging due to countless permutations of available filler materials, different morphologies, filler loadings and fabrication routes.
View Article and Find Full Text PDFPolymers have become indispensable in many engineering applications because of their attractive properties, including low volumetric mass density and excellent resistance to corrosion. However, polymers typically lack in mechanical, thermal, and electrical properties that may be required for certain engineering applications. Therefore, researchers have been seeking to improve properties by modifying polymers with particulate fillers.
View Article and Find Full Text PDFIn this study, a numerical modeling approach was used to investigate the current-voltage behavior of conductive nanoplatelet-based nanocomposites. A three-dimensional continuum Monte Carlo model was employed to randomly disperse the nanoplatelets in a cubic representative volume element. A nonlinear finite element-based model was developed to evaluate the electrical behavior of the nanocomposite for different levels of the applied electric field.
View Article and Find Full Text PDFIn this study, a three-dimensional continuum percolation model was developed based on a Monte Carlo simulation approach to investigate the percolation behavior of an electrically insulating matrix reinforced with conductive nano-platelet fillers. The conductivity behavior of composites rendered conductive by randomly dispersed conductive platelets was modeled by developing a three-dimensional finite element resistor network. Parameters related to the percolation threshold and a power-low describing the conductivity behavior were determined.
View Article and Find Full Text PDFIn this theoretical research work, the fracture characteristics of graphene-modified polymer nanocomposites were studied. A three-dimensional representative volume element-based multiscale model was developed in a finite element environment. Graphene sheets were modeled in an atomistic state, whereas the polymer matrix was modeled as a continuum.
View Article and Find Full Text PDFNanoscale Res Lett
September 2012
The aim of the research article is to develop a representative volume element using finite elements to study the buckling stability of graphene/polymer nanocomposites. Research work exploring the full potential of graphene as filler for nanocomposites is limited in part due to the complex processes associated with the mixing of graphene in polymer. To overcome some of these issues, a multiscale modeling technique has been proposed in this numerical work.
View Article and Find Full Text PDF