The retina is exquisitely patterned, with neuronal somata positioned at regular intervals to completely sample the visual field. Here, we show that phosphatase and tensin homolog (Pten) controls starburst amacrine cell spacing by modulating vesicular trafficking of cell adhesion molecules and Wnt proteins. Single-cell transcriptomics and double-mutant analyses revealed that Pten and Down syndrome cell adhesion molecule Dscam) are co-expressed and function additively to pattern starburst amacrine cell mosaics.
View Article and Find Full Text PDFNeurodegenerative diseases are accompanied by dynamic changes in gene expression, including the upregulation of hallmark stress-responsive genes. While the transcriptional pathways that impart adaptive and maladaptive gene expression signatures have been the focus of intense study, the role of higher order nuclear organization in this process is less clear. Here, we examine the role of the nuclear lamina in genome organization during the degeneration of rod photoreceptors.
View Article and Find Full Text PDFChromatin remodellers are among the most important risk genes associated with neurodevelopmental disorders (NDDs), however, their functions during brain development are not fully understood. Here, we focused on Sifrim-Hitz-Weiss Syndrome (SIHIWES)-an intellectual disability disorder caused by mutations in the CHD4 chromodomain helicase gene. We utilized mouse genetics to excise the Chd4 ATPase/helicase domain-either constitutively, or conditionally in the developing telencephalon.
View Article and Find Full Text PDFTemporal identity factors are sufficient to reprogram developmental competence of neural progenitors and shift cell fate output, but whether they can also reprogram the identity of terminally differentiated cells is unknown. To address this question, we designed a conditional gene expression system that allows rapid screening of potential reprogramming factors in mouse retinal glial cells combined with genetic lineage tracing. Using this assay, we found that coexpression of the early temporal identity transcription factors Ikzf1 and Ikzf4 is sufficient to directly convert Müller glial (MG) cells into cells that translocate to the outer nuclear layer (ONL), where photoreceptor cells normally reside.
View Article and Find Full Text PDFCell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking.
View Article and Find Full Text PDFTemporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production.
View Article and Find Full Text PDFMany transcription factors regulating the production, survival, and function of photoreceptor cells have been identified, but little is known about transcriptional co-regulators in retinal health and disease. Here, we show that BCL6 co-repressor (BCOR), a Polycomb repressive complex 1 factor mutated in various cancers, is involved in photoreceptor degenerative diseases. Using proteomics and transcription assays, we report that BCOR interacts with the transcription factors CRX and OTX2 and reduces their ability to activate the promoters of photoreceptor-specific genes.
View Article and Find Full Text PDFDuring brain development, the genome must be repeatedly reconfigured in order to facilitate neuronal and glial differentiation. A host of chromatin remodeling complexes facilitates this process. At the genetic level, the non-redundancy of these complexes suggests that neurodevelopment may require a lexicon of remodelers with different specificities and activities.
View Article and Find Full Text PDFNeural progenitor cells undergo identity transitions during development to ensure the generation different types of neurons and glia in the correct sequence and proportions. A number of temporal identity factors that control these transitions in progenitor competence have been identified, but the molecular mechanisms underlying their function remain unclear. Here, we asked how Casz1, the mammalian orthologue of Drosophila castor, regulates competence during retinal development.
View Article and Find Full Text PDFMultipotent retinal progenitor cells (RPCs) generate various cell types in a precise chronological order, but how exactly cone photoreceptor production is restricted to early stages remains unclear. Here, we show that the POU-homeodomain factors Pou2f1/Pou2f2, the homologs of temporal identity factors nub/pdm2, regulate the timely production of cones in mice. Forcing sustained expression of Pou2f1 or Pou2f2 in RPCs expands the period of cone production, whereas misexpression in late-stage RPCs triggers ectopic cone production at the expense of late-born fates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2018
Genome organization plays a fundamental role in the gene-expression programs of numerous cell types, but determinants of higher-order genome organization are poorly understood. In the developing mouse retina, rod photoreceptors represent a good model to study this question. They undergo a process called "chromatin inversion" during differentiation, in which, as opposed to classic nuclear organization, heterochromatin becomes localized to the center of the nucleus and euchromatin is restricted to the periphery.
View Article and Find Full Text PDFNewborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina.
View Article and Find Full Text PDFDuring fetal and postnatal development, the human brain generates 160 billion neuronal and glial cells, each with precise cellular phenotypes. To effectively manage such a complicated task, intrinsic (e.g.
View Article and Find Full Text PDFDuring development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1-induced axon outgrowth and guidance.
View Article and Find Full Text PDFNeural progenitors alter their output over time to generate different types of neurons and glia in specific chronological sequences, but this process remains poorly understood in vertebrates. Here we show that Casz1, the vertebrate ortholog of the Drosophila temporal identity factor castor, controls the production of mid-/late-born neurons in the murine retina. Casz1 is expressed from mid/late stages in retinal progenitor cells (RPCs), and conditional deletion of Casz1 increases production of early-born retinal neurons at the expense of later-born fates, whereas precocious misexpression of Casz1 has the opposite effect.
View Article and Find Full Text PDFThis unit describes methods for non-isotopic RNA in situ hybridization on embryonic mouse sections. These methods can be used to follow the spatiotemporal dynamics of gene expression in an embryonic tissue of interest. They involve the use of labeled (e.
View Article and Find Full Text PDFNeurogenesis (Austin)
September 2016
While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcriptional cascade similar to the one used in Drosophila neuroblasts might control progenitor temporal identity in vertebrates. The zinc finger transcription factor Ikzf1 (Ikaros), an ortholog of Drosophila hunchback, was reported to confer early temporal identity in retinal progenitors and, more recently, the ortholog of Drosophila castor, Casz1, was found to function as a mid/late temporal identity factor that is negatively regulated by Ikzf1.
View Article and Find Full Text PDFLittle is known about how vertebrate neural progenitors in a given spatial domain change their identity over time. In this issue of Neuron, Dias et al. (2014) discover that hindbrain progenitors switch their output in response to TGF-β signaling.
View Article and Find Full Text PDFNeural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascl1 are key cell fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors, which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an intermixed neuronal component.
View Article and Find Full Text PDFDrosophila neural progenitor cells are competent to give rise to certain neuronal cell types only during a limited period of time. Kohwi et al. link the termination of early competence to changes in subnuclear organization of chromatin.
View Article and Find Full Text PDFIn the developing nervous system, cell diversification depends on the ability of neural progenitor cells to divide asymmetrically to generate daughter cells that acquire different identities. While much work has recently focused on the mechanisms controlling self-renewing asymmetric divisions producing a differentiating daughter and a progenitor, little is known about mechanisms regulating how distinct differentiating cell types are produced at terminal divisions. Here we study the role of the endocytic adaptor protein Numb in the developing mouse retina.
View Article and Find Full Text PDFProgenitor cells undergo a series of stable identity transitions on their way to becoming fully differentiated cells with unique identities. Each cellular transition requires that new sets of genes are expressed, while alternative genetic programs are concurrently repressed. Here, we investigated how the proneural gene Neurog2 simultaneously activates and represses alternative gene expression programs in the developing neocortex.
View Article and Find Full Text PDFThe neocortex is comprised of six neuronal layers that are generated in a defined temporal sequence. While extrinsic and intrinsic cues are known to regulate the sequential production of neocortical neurons, how these factors interact and function in a coordinated manner is poorly understood. The proneural gene Neurog2 is expressed in progenitors throughout corticogenesis, but is only required to specify early-born, deep-layer neuronal identities.
View Article and Find Full Text PDFCajal-Retzius cells are essential pioneer neurons that guide neuronal migration in the developing neocortex. During development, Cajal-Retzius cells arise from distinct progenitor domains that line the margins of the dorsal telencephalon, or pallium. Here, we show that the proneural gene Ascl1 is expressed in Cajal-Retzius cell progenitors in the pallial septum, ventral pallium, and cortical hem.
View Article and Find Full Text PDFThe Mrj co-chaperone is expressed throughout the mouse conceptus, yet its requirement for placental development has prohibited a full understanding of its embryonic function. Here, we show that Mrj(-/-) embryos exhibit neural tube defects independent of the placenta phenotype, including exencephaly and thin-walled neural tubes. Molecular analyses revealed fewer proliferating cells and a down-regulation of early neural progenitor (Pax6, Olig2, Hes5) and neuronal (Nscl2, SCG10) cell markers in Mrj(-/-) neuroepithelial cells.
View Article and Find Full Text PDF