Publications by authors named "Pierre Martineau"

Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus.

View Article and Find Full Text PDF

Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively.

View Article and Find Full Text PDF

Background: Natural killer (NK) cell therapy is considered an attractive and safe strategy for anticancer therapy. Nevertheless, when autologous or allogenic NK cells are used alone, the clinical benefit has been disappointing. This is partially due to the lack of target specificity.

View Article and Find Full Text PDF
Article Synopsis
  • Triple-negative breast cancer (TNBC) has a poor prognosis, and cathepsin D (cath-D) is a key target for antibody therapies to enhance natural killer (NK) cell activity against tumors.
  • This study explored the effectiveness of engineered anti-cath-D antibodies in triggering NK cell-mediated attacks (ADCC) and their potential in combination therapies for TNBC.
  • Results showed that the Fc-engineered antibodies activated NK cells and promoted ADCC against TNBC cells, suggesting their promise as a treatment strategy when used alongside other therapies.
View Article and Find Full Text PDF
Article Synopsis
  • This study is about creating new surfaces for a technique called capillary electrophoresis (CE) that helps analyze proteins better.
  • The new surfaces are designed to reduce problems like proteins sticking to the walls of the tube and help control how the fluid flows.
  • The researchers tested these new surfaces with different proteins and found that they worked better than older methods by allowing for better control and less unwanted interactions.
View Article and Find Full Text PDF

Background And Purpose: Triple-negative breast cancer (TNBC) has poorer outcomes than other breast cancers (BC), including HER2 BC. Cathepsin D (CathD) is a poor prognosis marker overproduced by BC cells, hypersecreted in the tumour microenvironment with tumour-promoting activity. Here, we characterized the immunomodulatory activity of the anti-CathD antibody F1 and its improved Fab-aglycosylated version (F1M1) in immunocompetent mouse models of TNBC (C57BL/6 mice harbouring E0771 cell grafts) and HER2-amplified BC (BALB/c mice harbouring TUBO cell grafts).

View Article and Find Full Text PDF

Background: Radiolabeled-antibodies usually display non-specific liver accumulation that may impair image analysis and antibody biodistribution. Here, we investigated whether Fc silencing influenced antibody biodistribution. We compared recombinant Zr-labeled antibodies (human IgG1 against different targets) with wild-type Fc and with mutated Fc (LALAPG triple mutation to prevent binding to Fc gamma receptors; FcγR).

View Article and Find Full Text PDF

The annual "Antibody Industrial Symposium", co-organized by LabEx MAbImprove and MabDesign, held its 10th anniversary edition in Montpellier, France, on June 28-29, 2022. The meeting focused on new results and concepts in antibody engineering (naked, mono- or multi-specific, conjugated to drugs or radioelements) and also on new cell-based therapies, such as chimeric antigenic receptor (CAR)-T cells. The symposium, which brought together scientists from academia and industry, also addressed issues concerning the production of these molecules and cells, and the necessary steps to ensure a strong intellectual property protection of these new molecules and approaches.

View Article and Find Full Text PDF

Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders.

View Article and Find Full Text PDF

COVID-19 is caused by the infection of the lungs by SARS-CoV-2. Monoclonal antibodies, such as sotrovimab, showed great efficiency in neutralizing the virus before its internalization by lung epithelial cells. However, parenteral routes are still the preferred route of administration, even for local infections, which requires injection of high doses of antibody to reach efficacious concentrations in the lungs.

View Article and Find Full Text PDF

Spleen tyrosine kinase (Syk) expression have been both positively and negatively associated with tumorigenesis. Our goal was to evaluate the contribution of Syk and its two splice variants, full length Syk (L) and short isoform Syk (S), in the tumor biology of colorectal cancer cells (CRC). The analysis of Syk expression in primary human colorectal tumors, as well as the analysis of TCGA database, revealed a high Syk mRNA expression score in colorectal cancer tumors, suggesting a tumor promotor role of Syk in CRC.

View Article and Find Full Text PDF

The PEAK family pseudokinases are essential components of tyrosine kinase (TK) pathways that regulate cell growth and adhesion; however, their role in human cancer remains unclear. Here, we report an oncogenic activity of the pseudokinase PEAK2 in colorectal cancer (CRC). Notably, high expression, which encodes PEAK2, was associated with a bad prognosis in CRC patients.

View Article and Find Full Text PDF

Ordered mesoporous materials and their modification with multiple functional groups are of wide scientific interest for many applications involving interaction with biological systems and biomolecules (e.g., catalysis, separation, sensor design, nano-science or drug delivery).

View Article and Find Full Text PDF

Quantitative pharmacology brings important advantages in the design and conduct of pediatric clinical trials. Herein, we demonstrate the application of a model-based approach to select doses and pharmacokinetic sampling scenarios for the clinical evaluation of a novel oral suspension of spironolactone in pediatric patients with edema. A population pharmacokinetic model was developed and qualified for spironolactone and its metabolite, canrenone, using data from adults and bridged to pediatrics (2 to <17 years old) using allometric scaling.

View Article and Find Full Text PDF

Compared to chemicals that continue to dominate the overall pharmaceutical market, protein therapeutics offer the advantages of higher specificity, greater activity, and reduced toxicity. While nearly all existing therapeutic proteins were developed against soluble or extracellular targets, the ability for proteins to enter cells and target intracellular compartments can significantly broaden their utility for a myriad of exiting targets. Given their physical, chemical, biological instability that could induce adverse effects, and their limited ability to cross cell membranes, delivery systems are required to fully reveal their biological potential.

View Article and Find Full Text PDF

Anti‑Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets in ovarian carcinoma. Conversely, the role of the three AMH type I receptors (AMHRIs), namely activin receptor‑like kinase (ALK)2, ALK3 and ALK6, in ovarian cancer remains to be clarified. To determine the respective roles of these three AMHRIs, the present study used four ovarian cancer cell lines (COV434‑AMHRII, SKOV3‑AMHRII, OVCAR8, KGN) and primary cells isolated from tumor ascites from patients with ovarian cancer.

View Article and Find Full Text PDF

Cancer is a multi-step disease where an initial tumour progresses through critical steps shaping, in most cases, life-threatening secondary foci called metastases. The oncogenic cascade involves genetic, epigenetic, signalling pathways, intracellular trafficking and/or metabolic alterations within cancer cells. In addition, pre-malignant and malignant cells orchestrate complex and dynamic interactions with non-malignant cells and acellular matricial components or secreted factors within the tumour microenvironment that is instrumental in the progression of the disease.

View Article and Find Full Text PDF

In ovarian carcinoma, anti-Müllerian hormone (AMH) type II receptor (AMHRII) and the AMH/AMHRII signaling pathway are potential therapeutic targets. Here, AMH dose-dependent effect on signaling and proliferation was analyzed in four ovarian cancer cell lines, including sex cord stromal/granulosa cell tumors and high grade serous adenocarcinomas (COV434-AMHRII, SKOV3-AMHRII, OVCAR8 and KGN). As previously shown, incubation with exogenous AMH at concentrations above the physiological range (12.

View Article and Find Full Text PDF

Immunohistochemistry is a widely used technique for research and diagnostic purposes that relies on the recognition by antibodies of antigens expressed in tissues. However, tissue processing and particularly formalin fixation affect the conformation of these antigens through the formation of methylene bridges. Although antigen retrieval techniques can partially restore antigen immunoreactivity, it is difficult to identify antibodies that can recognize their target especially in formalin-fixed paraffin-embedded tissues.

View Article and Find Full Text PDF

Monoclonal antibody (mAb)-based immunotherapy is booming in oncology. In 2020, more than 40% of FDA (Food and Drug Administration)-approved antibodies (34 out of 84 antibodies, according to The Antibody Society) have an indication for cancer therapy. In contrast to standard chemotherapy, they demonstrate a much better safety profile for patients.

View Article and Find Full Text PDF

Human epidermal growth factor receptor 4 (HER4) isoforms have oncogenic or tumor suppressor functions depending on their susceptibility to proteolytic cleavage and HER4 intracellular domain (4ICD) translocation. Here, we report that the neuregulin 1 (NRG1) tumor suppressor mechanism through the HER4 JMa/CYT1 isoform can be mimicked by the agonist anti-HER4 Ab C6. Neuregulin 1 induced cleavage of poly(ADP-ribose) polymerase (PARP) and sub-G DNA fragmentation, and also reduced the metabolic activity of HER3 /HER4 cervical (C-33A) and ovarian (COV318) cancer cells.

View Article and Find Full Text PDF

Antibodies are now recognized as routine molecules in many therapeutic fields, no longer restricted to oncology and inflammation. This explosion of the field leads to new needs that can be better fulfilled by molecules inspired but different from conventional antibodies. In particular, the antibody molecule has multiple functions that are not always necessary, such as its ability to recruit immune system cells, its bivalency, or its high plasma half-life.

View Article and Find Full Text PDF

Previously, we classified colorectal cancers (CRCs) into five CRCAssigner (CRCA) subtypes with different prognoses and potential treatment responses, later consolidated into four consensus molecular subtypes (CMS). Here we demonstrate the analytical development and validation of a custom NanoString nCounter platform-based biomarker assay (NanoCRCA) to stratify CRCs into subtypes. To reduce costs, we switched from the standard nCounter protocol to a custom modified protocol.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) have revolutionized the treatment landscape in many disciplines of human medicine. To continue this exciting trend, sustained identification of new, validated and preferably functional targets are needed. However, this is the precise bottleneck in today's development of the next generation of therapeutic mAbs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionppl2hdsh7kf7gbcu6lm5frv5s2i561v4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once