Background: There has been a longstanding question as to whether testosterone therapy could precipitate or worsen urinary symptoms in aging men. We investigated the effects of 1-year oral testosterone undecanoate (TU) therapy on urinary symptoms in aging, hypogonadal men.
Methods: A total of 322 men ≥50 years with symptomatic testosterone deficiency participated in a 1-year, randomized, multicenter, double-blind trial.
Objective: We investigated the effects of oral testosterone undecanoate (TU) on bone mineral density (BMD), lean body mass (LBM) and body fat mass (BFM) in aging men with symptomatic testosterone deficiency (TD).
Methods: Three hundred twenty-two men ≥50 years with TD symptoms and calculated free testosterone <0.26 nmol/L participated in a multicenter, double-blind, placebo-controlled trial.
Objective: Elevated growth hormone (GH) levels lead to increased circulating insulin-like growth factor-I (IGF-I), but the effects on localised muscle IGF-I splice variant expression is not known. The effects of rhGH administration, with or without an acute bout of high resistance exercise, were measured on serum IGF-I and on the mRNA levels of IGF-I splice variants in the vastus lateralis muscle of healthy young men.
Design: The study was a randomised double blind trial with a crossover design.
Kallmann's syndrome corresponds to a loss of sense of smell and hypogonadotrophic hypogonadism. Defects in anosmin-1 result in the X-linked inherited form of Kallmann's syndrome. Anosmin-1 is an extracellular matrix protein comprised of an N-terminal, cysteine-rich (Cys-box) domain and a whey acidic protein-like (WAP) domain, followed by four fibronectin type III (FnIII) domains.
View Article and Find Full Text PDFDefective function of anosmin-1, the protein encoded by KAL-1, underlies X-linked Kallmann's syndrome (X-KS), a human hereditary developmental disorder. Anosmin-1 appears to play a role in neurite outgrowth and axon branching, although molecular mechanisms of its action are still unknown. Anosmin-1 contains a WAP (whey acidic protein-like) domain and four contiguous FnIII (fibronectin-like type III) repeats; its WAP domain shows similarity to known serine protease inhibitors, whereas the FnIII domains contain HS (heparan sulphate)-binding sequences.
View Article and Find Full Text PDFHypogonadotropic hypogonadism is characterized by failure of gonadal function secondary to deficient gonadotropin secretion, resulting from either a pituitary or hypothalamic defect, and is commonly seen in association with structural lesions or functional defects affecting this region. Although the genetic basis for idiopathic hypogonadotropic hypogonadism is largely unknown, mutations in several genes involved in the hypothalamo-pituitary-gonadal axis development and function have recently been implicated in the pathogenesis of this condition. Genes currently recognized to be involved include KAL-1 (associated with X-linked Kallmann Syndrome), gonadotropin-releasing hormone (GnRH) receptor, gonadotropins, pituitary transcription factors (HESX1, LHX3, and PROP-1), orphan nuclear receptors (DAX-1, associated with X-linked adrenal hypoplasia congenital, and SF-1), and three genes also associated with obesity (leptin, leptin receptor, and prohormone convertase 1 [ PC1]).
View Article and Find Full Text PDFTrends Endocrinol Metab
April 2002
Pulsatile secretion of the hypothalamic decapeptide gonadotrophin-releasing hormone (GnRH) regulates activity of the pituitary-gonadal reproductive axis. Defects of this neuroendocrine axis necessarily result in hypogonadotrophic hypogonadism. In many vertebrate species studied, the main population of GnRH neurones originates extracranially within the olfactory system.
View Article and Find Full Text PDF